

Utah Air Quality Monitoring Network Five-year Network Assessment

Utah Division of Air Quality Air Monitoring Section Nov 2020

Table of Contents

List of Tables	3
List of Figures	5
GLOSSARY	7
EXECUTIVE SUMMARY	8
1. Background and Overview	10
1.1 Meteorology and Topography	
1.2 Major Pollutants and Emission Sources	10
1.3 Demography	11
1.4 Emission Inventories	11
2. Air Monitoring Network Design	15
3. Network Technical Assessment	19
3.1 Particle Monitoring	19
3.1.1 FRM PM _{2.5} network	19
3.1.1.1 Area and population served	19
3.1.1.2 Historical trends and deviations from NAAQS	20
3.1.1.3 Site-by-site analysis	23
3.1.2 FEM PM _{2.5} network	
3.1.3 FRM PM ₁₀ network	
3.1.3.1 Historical trends and deviations from NAAQS	
3.1.3.2 Site-by-site analysis	40
3.1.4 Continuous PM ₁₀ network	
3.2 Gaseous Monitoring	44
3.2.1 Ozone Network	44
3.2.1.1 Area and Population Served	44
3.2.1.2 Exceedance Probability	44
3.2.1.3 Historical trends and deviations from NAAQS	45
3.2.1.4 Site-by-site analysis	50
3.2.2 Sulfur Dioxide (SO ₂) Network	59
3.2.2.1 Historical trends and deviations from NAAQS	59

3.2.2.2 Site-by-site analysis	61
3.2.3 Nitrogen Dioxide (NO ₂) Network	64
3.2.3.1 Historical trends and deviations from NAAQS	64
3.2.3.2 Site-by-site analysis and near-road NO ₂ monitoring	66
3.2.4 Carbon Monoxide (CO) Network	72
3.2.4.1 Historical trends and deviations from NAAQS	72
3.2.4.2 Site-by-site analysis	74
3.3 Lead (Pb) Network	77
3.3.1 Historical trends and deviations from NAAQS	77
3.4 Chemical Speciation Network (CSN)	77
3.5 NCore Network	
3.6 Air Toxics Trends Network	
3.7 Mercury Deposition Network	
3.8 Meteorological Monitoring Network	
4. Summary of Proposed Network Modifications	
Appendix A- Site Information	

List of Tables

Table 1. Core Based Statistical Areas (CBSAs), including metropolitan and micropolitan
statistical areas (MSA and µSA, respectively), and their corresponding population estimates in
the state of Utah
Table 2. 2017 emission inventory estimates (tons/year) by county for CO, NO _x , PM ₁₀ , PM _{2.5} , SO _x
and VOCs
Table 3. Utah air monitoring network
Table 4. Measured parameters at the sampling stations in Utah air monitoring network
Table 5. Area and population served by FRM PM _{2.5} samplers in Utah air monitoring network. 20
Table 6. Number of exceedances of PM _{2.5} 24-hr NAAQS for the period 2017-2019
Table 7. Minimum monitoring requirements for PM2.5. 24
Table 8. Number of active FRM PM2.5 monitors in each CBSA. 24
Table 9. Pearson correlation coefficient (R), average relative concentration difference and
distance between pairs of sites in Salt Lake City CBSA
Table 10. Results of two-tailed paired t-test for FRM PM2.5 pairings in Salt Lake City CBSA. 26
Table 11. Pearson correlation coefficient (R), average relative concentration difference between
pairs of sites in Provo-Orem CBSA
Table 12. Pearson correlation coefficients (R), average relative concentration difference and
distance between pairs of sites in Ogden-Clearfield CBSA
Table 13. List of FRM PM _{2.5} monitors in Utah air monitoring network and recommendations for
network modification
Table 14. List of FEM PM _{2.5} samplers in Utah air monitoring network and recommendations for
network modification
Table 15. Number of exceedances of PM_{10} 24hr-2006 NAAQS for the period 2017-2019 39
Table 16. Minimum monitoring requirements for PM10
Table 17. Number of active FRM PM ₁₀ monitors in each CBSA
Table 18. Results of two-tailed paired t-test for FRM PM ₁₀ pairings in Salt Lake City CBSA 42
Table 19. List of FRM PM ₁₀ samplers in Utah air monitoring network and recommendations for
network modification
Table 20. Area and population served by ozone monitors in Utah air monitoring network 44
Table 21. Number of exceedances of ozone 8-hr 2008 NAAQS for the period 2017-2019 Error!
Bookmark not defined.
Table 22. Minimum monitoring requirements for ozone
Table 23. Number of active ozone monitors in each CBSA
Table 24. Pearson correlation coefficient (R), average relative concentration difference and
distance between pairs of sites in Salt Lake City CBSA
Table 25. Pearson correlation coefficient (R), average relative concentration difference and
distance between pairs of sites in Provo-Orem CBSA

Table 26. Pearson correlation coefficient (R), average relative difference and distance between
pairs of sites for ozone in Ogden-Clearfield CBSA
Table 27. List of ozone monitors in UDAQ network and recommendations for network
modification
Table 28. Number of exceedances of primary 1-hr SO ₂ NAAQS during 2017-2019 59
Table 29. Number of active SO ₂ monitors in each CBSA and minimum number of required
monitors
Table 30. List of SO ₂ monitors in Utah air monitoring network and recommendations for
network modification
Table 31. Number of exceedances of primary 1-hr NO ₂ NAAQS during 2017-2019 64
Table 32. Number of active NO ₂ monitors in each CBSA and minimum number of required
monitors
Table 33. List of NO ₂ monitors in Utah air monitoring network and recommendations for
network modification
Table 34. Number of exceedances of primary 1-hr and 8-hr CO NAAQS during 2017-201972
Table 35. Number of active CO monitors in each CBSA and minimum number of required
monitors
Table 36. List of CO monitors in Utah air monitoring network and recommendations for network
modification76
Table 37. List of chemical speciation sites in Utah air monitoring network and recommendations
for network modification
Table 38. List of NCore network sites and recommendations for network modification
Table 39. List of National Air Toxics Trends Stations (NATTS) and recommendations for
network modification
Table 40. List of measured meteorological parameters, including a) relative humidity, b) ambient
temperature and temperature difference, c) barometric pressure, d) wind speed, e) wind direction,
f) standard deviation in wind direction (WD sigma) and g) solar radiation, in Utah air monitoring
network and recommendations for network modification

List of Figures

Figure 1. 2017 statewide emissions inventory (percent contribution), by source category, for a)
CO, b) NOx, c) PM ₁₀ , d) PM _{2.5} , e) SO ₂ , f) VOCs and h) total 2017 contributions 14
Figure 2. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during
the period 2000-2019
Figure 3. Annual design value trends and comparison to NAAQS for FRM/PM2.5 during the
period 2000-2019
Figure 4. Area served and surface probability map for PM _{2.5} . 24-hr NAAQS of 35 µg/m ³ . Black
font: stations operating FRM and FEM instruments, white font: stations operating FEM and red
font: station discontinued
Figure 5. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during
the period 2000-2019
Figure 6. Area served and surface probability map for PM _{2.5} . 24-hr NAAQS of 35 μ g/m ³ . Black
font: stations operating FRM and FEM instruments and red font: station discontinued or
combined
Figure 7. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during
the period 2000-2019
Figure 8. Area served and surface probability map for PM _{2.5} . 24-hr NAAQS of 35 μ g/m ³ . Black
font, operating FRM and FEM instruments and red font station(s) discontinued or consolidated.
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019
Figure 9. $PM_{2.5}$ 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019. 29 Figure 10. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019. 30
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ during the period 2000-2019.35
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ during the period 2000-2019.35Figure 12. Location of the PM 10 monitoring sites. Black font represents sites that are currently
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019. 29 Figure 10. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during 30 Figure 11. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM/FEM PM _{2.5} 30 Figure 11. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM/FEM PM _{2.5} 35 furing the period 2000-2019. 35 Figure 12. Location of the PM 10 monitoring sites. Black font represents sites that are currently 35 operating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and red 38
Figure 9. $PM_{2.5}$ 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019
Figure 9. PM2.5 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM PM2.5 duringthe period 2000-2019.29Figure 10. PM2.5 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM PM2.5 duringthe period 2000-2019.30Figure 11. PM2.5 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM PM2.5during the period 2000-2019.35Figure 12. Location of the PM 10 monitoring sites. Black font represents sites that are currentlyoperating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and reddenotes stations discontinued.38Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM10 concentration forthe period 2000-2019. BV site considered SPM for PM10.39
Figure 9. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during the period 2000-2019. 29 Figure 10. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM PM _{2.5} during 30 Figure 11. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM/FEM PM _{2.5} 30 Figure 11. PM _{2.5} 98 th percentile 24-hr (ug/m ³) and comparison to NAAQS for FRM/FEM PM _{2.5} 30 Figure 12. Location of the PM 10 monitoring sites. Black font represents sites that are currently 35 Figure 12. Location of the PM 10 monitoring sites. Black font represents sites that are currently 38 Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM ₁₀ concentration for 38 Figure 14. Area served and surface probability map for ozone. 45
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ during30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ 30Figure 12. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ 35Figure 12. Location of the PM $_{10}$ monitoring sites. Black font represents sites that are currently36operating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and red38Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM_{10} concentration for39Figure 14. Area served and surface probability map for ozone.45Figure 15. 8-hr design value trends and comparison to NAAQS for ozone during the period45
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ during the period 2000-2019.30Figure 12. Location of the PM $_{10}$ monitoring sites. Black font represents sites that are currentlyoperating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and reddenotes stations discontinued.38Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM_{10} concentration forthe period 2000-2019. BV site considered SPM for PM_{10} .39Figure 14. Area served and surface probability map for ozone.45Figure 15. 8-hr design value trends and comparison to NAAQS for ozone during the period47
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.29Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019.30Figure 11. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM $PM_{2.5}$ during the period 2000-2019.35figure 12. Location of the PM $_{10}$ monitoring sites. Black font represents sites that are currentlyoperating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and reddenotes stations discontinued.38Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM_{10} concentration forthe period 2000-2019. BV site considered SPM for PM_{10} .39Figure 15. 8-hr design value trends and comparison to NAAQS for ozone during the period47Figure 16. Trends in annual fourth-highest eight-hour ozone concentration and comparison to47
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019
Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ duringthe period 2000-2019

Figure 18. 1-hr 99 th percentile maximum value trends and comparison to NAAQS for SO ₂ during
the period 2009-2019
Figure 19. 1-hr average of 99 th percentile value trends and comparison to NAAQS for SO ₂
during the period 2017-2019
Figure 20. 1-hr design value trends and comparison to NAAQS for NO ₂ during the period 2007-
2019
Figure 21. Annual design value trends and comparison to NAAQS for NO ₂ during the period
2000-2019
Figure 22. Second-highest 1-hr concentration trends and comparison to NAAQS for CO during
the period 2000-2019
Figure 23. Second-highest 8-hr concentration trends and comparison to NAAQS for CO during
the period 2000-2019
Figure 24. Trends in maximum three-month average 24-hr Pb concentration during the period
2010-2017 and comparison to NAAQS
Figure 25. Monitoring stations designed for chemical Speciation, NCore, Air Toxic Trends and
IMPROVE

GLOSSARY

AQS	Air Quality System (EPA database)
CO	Carbon monoxide
CSA	Combined Statistical Area
FEM	Federal Equivalent Method
FRM	Federal Reference Method
MSA	Metropolitan Statistical Area
NAAQS	National Ambient Air Quality Standards
NCore	National Core multi-pollutant monitoring stations
NO	Nitric oxide
NO_2	Nitrogen dioxide
NOx	Reactive nitrogen oxides
NOy	Total reactive nitrogen
O ₃	Ozone
PM _{2.5}	Particulate matter with an equivalent diameter less than or equal to 2.5 μ m
PM_{10}	Particulate matter with an equivalent diameter less than or equal to 10 μ m
PWEI	Population Weighted Emissions Index
SIP	State Implementation Plan
SLAMS	State or Local Air Monitoring Stations
SO2	Sulfur dioxide
SPM	Special Purpose Monitor
VOC	Volatile Organic Compound

EXECUTIVE SUMMARY

The U.S. Environmental Protection Agency (EPA) amended its ambient air monitoring regulations to include a requisite for all state and local air quality monitoring agencies to prepare a technical assessment of their monitoring networks once every five years. This document describes the Utah Division of Air Quality (UDAQ) 2020 ambient air monitoring network assessment. The technical assessment was conducted in accordance with federal regulations (40 CFR, section 58.10) and intends to identify whether new sites are needed or existing sites are no longer needed, and whether the network meets monitoring objectives.

The monitoring objectives include determining whether the network supports compliance with the NAAQS (National Ambient Air Quality Standards), Air Quality Index (AQI) reporting, air quality models, air pollution research studies and the State Implementation Plan (SIP) development and maintenance.

Factors such as population growth, air pollution levels, monitoring network data and financial limitations were considered in the evaluation process for the Utah five-year monitoring plan.

The UDAQ's budget for the fiscal year 2020-2021 has been impacted by the global coronavirus pandemic, which may affect the resources to operate the network and may cause projected improvements to be placed on hold.

Findings

The UDAQ monitoring network meets all federal requirements and satisfactorily supports the UDAQ monitoring objectives. However, while comprehensive changes are not necessary at this time, some targeted modifications could be implemented to enhance the effectiveness of the network.

Recommendations

The proposed network modifications are summarized as follow:

- Complete the set-up of the two new multi-pollutant monitoring Inland Port stations, located at Monticello Academy and at the new State Prison. Variables to be monitored at these sites include Particulate Matter (PM_{2.5}), ozone (O₃), nitrogen oxides (NOx), black carbon (BC) and meteorological parameters.
- Relocation of Brigham City site. The UDAQ is currently searching for a suitable site to accommodate a Brigham City station, while the Harrisville site will be used to replace the Ogden station. Unexpected situations forced the UDAQ to shut down these existing sites.

- Establish a second monitoring site in Cache Valley. The UDAQ is in compliance with the required number of monitors at Cache valley; nevertheless, the property adjacent to the school where the Smithfield monitor is located, is being developed into a subdivision and may result in the need to relocate the current site in the future.
- Relocation of the Spanish Fork (SF) station to a nearby site due to planned construction work at its current location. This move will be a few 100 feet down the fence line and should not result in any data loss.
- Relocation of the Rose Park (RP) station to the Air Monitoring Center (AMC) once the comparability assessment criteria are attained. This will require EPA concurrence.
- Establish a third monitoring site in Provo-Orem CBSA in order to have an alternative station for Lindon and Spanish Fork sites. It should be noted that the Lindon site is located at an elementary school that is on the short list for being rebuilt. Monitoring may not be feasible during construction and we are not confident that there will still be a location for a site based on school construction needs. At this time, we do not have any sort of schedule for the rebuild and it may or may not happen in light of current conditions. However, in order to be prepared, a third site in Utah County should be established.
- Establish a second near-road NO₂ monitoring site in Salt Lake CBSA.
- The UDAQ will start updating the technology used to measure the meteorological variables. Presently, the system used to measure the wind direction and speed consist of cup anemometers and vane systems (in all the stations but Roosevelt and AMC), but it will be replaced by sonic anemometer systems (2D sonic wind sensors). Temperature and relative humidity probes and pyranometers to measure incoming solar radiation will also be updated or included in all the stations.
- Incorporate continuous PM₁₀ monitoring samplers to operate in co-location with FRM filter-based measurements for comparability assessment.

The UDAQ will continue reviewing all stations to ensure that they meet required acceptance criteria and monitoring objectives. Any sites that do not meet the requirements will be evaluated for future action.

Utah Air Quality Monitoring Network

Five-year Network Assessment

1. Background and Overview

1.1 Meteorology and Topography

Given its unique topography and meteorology, Utah continually faces severe air quality challenges, mainly in the Salt Lake Valley along the Wasatch Front and in the Uinta Basin. The Wasatch Mountains east of the Salt Lake Valley, Oquirrh Mountains to the west and the Traverse Mountain to the south form a basin-like topography. The valley is open to the Great Salt Lake to the northwest, with weak nighttime down-valley flows often carrying polluted air over the lake. The air is then carried back into the valley as a lake breeze on the following day. The Uinta Basin is an enclosed basin that lies in the northeast corner of Utah. The Basin is bounded on the north by the Uinta Mountain range, on the south by the Tavaputs Plateau, on the west by the Wasatch Range and on the east by elevated terrain separating it from Piceance Basin in Colorado. Significant topographical variations on the order of tens to hundreds of feet exist within the Basin, which is mostly situated in Duchesne and Uintah Counties. High-pressure weather systems and high solar zenith angle during winter lead to cold-air pools that periodically trap precursor gases in the Uinta Basin and Salt Lake Valley.

1.2 Major Pollutants and Emission Sources

The air basins along Utah's Wasatch Range, a region with 2.4 million residents (2010 census), have historically endured some of the most severe fine particulate matter (PM_{2.5}) air pollution in the United States. High levels of PM_{2.5} degrade visibility and are a significant public health concern associated with increased incidence of respiratory illness such as aggravation of asthma and premature mortality. During winter-time inversions, Utah is often susceptible to elevated levels of O₃ in the Uinta Basin and PM_{2.5} along the Wasatch Front and the Cache Valley. These pollutants are of greatest concern in this state, particularly O₃ since its formation in the Basin occurs in winter during inversions. High-pressure weather systems during winter lead to cold-air pools that periodically trap precursor gases, most notably volatile organic compounds (VOCs) and nitrogen oxides (NOx), in the valleys between the Wasatch and Oquirrh Mountains. These precursor gases subsequently react in the stagnant air to form O₃ and PM_{2.5}, leading to pollution levels occasionally exceeding the federal National Ambient Air Quality Standards (NAAQS). Snow cover can also enhance O₃ formation by increasing sunlight reflection (surface albedo) into the atmosphere¹. The complex chemical reactions and unique circumstances involving the

¹UDAQ, <u>2014 Uinta Basin Winter Ozone Study Final Report.</u>

formation of these pollutants make it challenging to develop effective control strategies. Summertime O₃ formation over the Great Salt Lake and along the Wasatch Front is also of concern. High levels of O₃ were recorded near the Great Salt Lake during 2010-2013². Major industrial sources in the Salt Lake Valley include Kennecott Copper mine and smelter located at the base of the Oquirrh Mountains in addition to oil refineries located between Salt Lake City and Bountiful to the north and to the Hill Air Force Base located in Ogden. Utah's five oil refineries process nearly 200,000 barrels of crude oil per calendar day, Utah's annual crude oil production in 2018 increased to the highest level in three years, and the state accounted for about 1 in every 100 barrels of oil produced in the United States³. Major roadways in the valley consist of Interstates 15, 80 and 215. I-15 spans the length of the Salt Lake Valley from north to south while I-80 runs from east to west across the valley and through Salt Lake City. I-215, on the other hand, forms a loop around the northern portion of the valley. Main industrial sources in the Uinta Basin comprise oil and gas wells, which displayed a considerable increase in production in recent years. Additionally, coal-fired power plants including; Bonanza, with capacity to generate power of 500-megawatt, Hunter, with capacity of 1320-megawatt and Huntington, with capacity of 1073-megawatt operate in the Utah basin and Emery county. Utah was the 12th-largest coal producing state in 2018, about four-fifths of the coal consumed in Utah is mined in the state, and almost all of the coal is used for electric power generation³. There is also some agricultural production, primarily alfalfa and corn along with other hay and grain crops.

1.3 Demography

The state of Utah can be divided into 10 core-based statistical areas (CBSAs) with population estimates as shown in Table 1. Each CBSA corresponds to a metropolitan or micropolitan statistical area (MSA and μ SA, respectively), depending on its population size. The list of CBSAs was derived from the U.S. Census Bureau while the population estimates for each CBSA were retrieved from the sub-county population projections report produced by Utah's Governor's Office of Management and Budget (<u>https://gomb.utah.gov/budget-policy/utahseconomy/</u>). The reported projections were derived using 2010 Census data as a baseline.

1.4 Emission Inventories

Table 2 lists the emission rates (in tons/year) of criteria and hazardous air pollutants, including CO, NO_x , PM_{10} , $PM_{2.5}$, SO_x and VOCs, by county. The data were acquired from the 2017 triennial emissions inventory, which corresponds to the most current inventory at the time of writing. The inventory covers over 440 individual point sources, 128 area source categories, and 12 non- and on-road source categories. Statewide source-specific emission estimates (in tons/year) are shown in Figure 1 for common criteria and hazardous air pollutants.

² UDAQ, <u>2012 Utah Ozone Study</u>.

³ <u>https://www.eia.gov/state/print.php?sid=UT</u>.

CBSA	Counties	Census 2010	Population estimate (2020)	Population estimate (2030)	% Change (2010-2030)	
Salt Lake City	Salt Lake, UT	1,087,873	1,255,736	1,440,329	32	
	Tooele, UT					
Provo-Orem MSA	Utah, UT	526,810	682,314	850,304	61	
	Juab, UT					
	Box Elder, UT					
Ogden-	Davis, UT	597 159	681 907	766 860	28	
Clearfield MSA	Morgan, UT	557,155	001,007	, 00,000	20	
	Weber, UT					
Heber µSA	Wasatch, UT	23,530	32,741	44,549	89	
Logan UT-ID	Cache, UT	112 (5)	120 220	100 100	40	
MSA	Franklin, ID	112,050	139,228	108,130	49	
Saint George MSA	Washington, UT	138,115	196,762	280,558	103	
Cedar City	Iron, UT	46,163	57,055	71,687	55	
μSA						
Price µSA	Carbon, UT	21,403	21,602	22,092	3	
Vernal µSA	Uintah, UT	32,588	38,982	41,099	26	
Summit Park µSA	Summit, UT	36,324	45,491	56,890	57	

Table 1. Core Based Statistical Areas (CBSAs), including metropolitan and micropolitan statistical areas (MSA and μ SA, respectively), and their corresponding population estimates in the state of Utah⁴.

⁴ https://gomb.utah.gov/budget-policy/utahseconomy/

County	PM ₁₀	PM _{2.5}	SOx	NO _x	VOCs	СО
Beaver	3,747	1,351	103	2,158	29,915	18,970
Box Elder	8,458	2,105	165	4,837	40,152	29,315
Cache	8,234	1,437	64	2,409	11,865	15,043
Carbon	4,394	826	501	2,612	17,564	9,254
Daggett	751	94	2	819	9,660	2,345
Davis	3,492	970	184	6,440	11,674	30,085
Duchesne	7,184	1,594	74	8,007	38,592	18,278
Emery	6,895	1,457	5,803	17,950	36,767	20,210
Garfield	3,114	589	23	755	46,149	13,440
Grand	3,427	492	8	2,696	40,935	13,789
Iron	4,803	968	41	3,958	35,082	18,616
Juab	2,971	923	64	2,600	34,736	17,214
Kane	3,705	922	45	946	43,737	17,153
Millard	7,382	2,262	2,537	15,318	64,166	28,455
Morgan	1,469	504	229	2,287	8,128	7,394
Piute	1,114	361	19	196	8,880	4,688
Rich	2,189	397	1	253	7,652	3,172
Salt Lake	17,419	4,615	2,557	24,469	29,465	109,751
San Juan	6,303	810	14	1,944	77,548	20,215
Sanpete	5,884	1,006	28	1,054	17,203	8,562
Sevier	5,885	1,670	99	1,911	20,372	18,242
Summit	3,575	940	179	3,746	17,462	14,341
Tooele	5,544	1,822	94	5,370	46,300	25,439
Uintah	7,325	1,557	61	7,960	93,559	22,150
Utah	15,486	2,946	141	11,357	30,611	51,266
Wasatch	4,230	877	35	1,123	14,459	10,624
Washington	6,154	1,209	51	5,036	39,636	30,087
Wayne	1,396	204	3	491	19,982	5,374
Weber	4,668	1,084	57	4,527	10,731	25,379
Statewide County Totals	157,198	35,991	13,183	143,229	902,981	608,852
Point Source Portables	155	62	77	438	31	147
Total	157,353	36,053	13,260	143,667	903,012	608,999

Table 2. 2017 emission inventory estimates (tons/year) by county for CO, NO_x, PM₁₀, PM_{2.5}, SO_x and VOCs.

2. Air Monitoring Network Design

The Utah air-monitoring network currently operates monitors at twenty-one locations statewide. Two new monitoring sites are currently being setup to fulfill the Utah Senate bill SB144, which directs the Department of Environmental Quality to establish and maintain monitoring facilities to measure the environmental impact from the Inland Port development project. The UDAQ monitoring stations are strategically situated to measure both local and regional levels of air pollutants, including particulate matter (PM), gaseous pollutants and meteorological variables. Currently, PM_{2.5} is measured at sixteen locations, PM₁₀ is monitored at seven locations, O₃ is monitored at eighteen locations, $NO_x/NO/NO_2$ is measured at seventeen locations, CO is monitored at seven locations and SO₂ at four locations. Nine out of sixteen PM_{2.5} monitoring sites and all PM₁₀ sites use filter-based equipment, additionally; all the sites monitoring PM_{2.5} are equipped with continuous monitors. Meteorological parameters, wind speed, wind direction, temperature and relative humidity, are measured at most of the sampling sites. The location and elevation of the monitoring sites, the EPA Air Quality System (AQS) site codes and the measured variables at each station are provided in Table 3 and Table 4. Moreover, the network includes stations that participate in the National Core (NCore), Speciation Trends Network (STN), Chemical Speciation Network (CSN), Photochemical Assessment Monitoring Stations (PAMS), Toxics and Near-road station EPA monitoring programs.

Data collected at these stations are primarily used for the following objectives:

- Evaluating population exposure to air pollutants
- Tracking the spatial distribution of air pollutants
- Assessing historical trends in air pollution
- Supporting compliance with ambient air quality standards (primary and secondary)
- Supporting air quality models and research studies
- Informing the general public of air pollution levels
- Developing state implementation plans (SIPs) and legislative air pollution control measures
- Tracking the effectiveness of air pollution control strategies
- Activating control measures during high air pollution episodes, such as restricting wood burning during winter-time inversions
- Monitoring of specific emission sources and air pollutants

The sampling sites are strategically located to meet the aforementioned monitoring objectives. For instance, some sites are selected to measure PM concentrations in highly populated areas while others are selected to determine the extent of O_3 (and its precursors) transport from the Wasatch Front to the Uinta Basin. The UDAQ is continually working on optimizing the monitoring instruments in its network. Site-specific objectives as well as measurement parameters, sampling frequency and method are provided in Appendix A. The monitoring objectives and spatial scale of representativeness at each site are also provided.

However, considering the continuously-evolving federal air quality standards, growing economy and population as well as budgetary constraints, efficient and representative pollution monitoring in the state of Utah demands further optimization or expansion of the air monitoring network. This includes adding new sites or sampling equipment, focusing on monitoring pollutants of current and local concern (e.g. air toxics, O_3 and its precursors) as well as conducting special studies to address pressing air quality issues, as discussed in the subsequent sections. To that end, the following factors were considered in the air monitoring network review:

- EPA siting requirements (40 CFR, part 58).
- Compliance with the NAAQS
- Air Quality Index (AQI) reporting and forecasting
- SIP development and maintenance
- Air quality models and control strategy selection
- Air quality research studies and special monitoring programs
- Population growth
- Funding
- Logistical issues

Table 3. Utah air monitoring network.

County	AQS code	Station Name	Station Address	Latitude	Longitude	Elevation (m)	
Cache County	49-005-0007	Smithfield, SM	675 W. 220 N., Smithfield	41.8428	-111.8519	1377	
Weber County	49-057-1003	Harrisville, HV	425 W. 2550 N., Harrisville	41.3028	-111.9883	1331	
49-011-0004 Davis County		Bountiful Viewmont, BV	1370 N. 171 W., Bountiful	40.9031	-111.8856	1309	
	49-011-6001	Antelope Island, Al	No street address; on an island	41.0393	-112.2313	1359	
	49-035-3015	Air Monitoring Center, AMC	240 North 1950 W. Salt Lake City	40.7769	-111.9461	1296	
	49-035-3012	Herriman #3, H3	14058 Mirabella Dr., Herriman	40.4964	-112.0363	1534	
Salt Lake	49-035-3005	Saltair, SA	6640 W. 1680 N., Salt Lake City	40.8059	-112.0498	1282	
County	49-035-2005	Copperview, CV	8449 S. Monroe St., Midvale	40.5981	-111.8942	1290	
	49-035-3006	Hawthorne, HW	1675 S. 600 E., Salt Lake City	40.7335	-111.8717	1306	
	49-035-4002	Near Road, NR	5001 Galleria Dr, Murray	40.6629	-111.9012	1295	
	49-035-3010	Rose Park, RP	1400 W. Goodwin Ave., Salt Lake City	40.7955	-111.9309	1295	
	49-049-4001	Lindon, LN	50 N. Main St.,	40.3388 -111.7133		1442	
Utah County	tah County 49-049-5010 Spanish For SF		2050 N. 300 W., Spanish Fork (airport)	40.1363	-111.6602	1380	
	49-045-0004	Erda, ED	2135 W. Erda Way	40.6004	-112.3553	1320	
Tooele County	bele County 49-045-6001 Badger Island, Bl		No street address; on an island	40.9421	-112.5620	1282	
Duchesne	49-013-0002	Roosevelt, RS	290 S. 1000 W.,	40.2941	-110.0090	1588	
Uintah County	49-047-1003	Vernal, V4	628 N. 1700 W.,	40.4650	-109.5607	1667	
Carbon County	49-007-1003	Price, P2	351 S. 2500 E., Price	39.5958	-110.7700	1740	
Iron County	49-021-0005	Enoch, EN	325 East N. Minersville., Enoch	37.7474	-113.0555	1692	
Garfield	49-017-0006	Escalante, ES	755 W. Main.,	37.7756	-111.6147	1789	
Washington County	49-053-0007	Hurricane, HC	147 N. 870 W., Hurricane, UT	37.1790	-113.3052	992	

County	Site		PM 2.5			PM 10		PM	Speciation	Lead	O 3	NOx	ΝΟγ	SO ₂	СО	NH ₃	Toxics	BC	MET.
		Primary	Co- located	Real- time	Primary	Co- located	Real- time	Coarse	PM 2.5			NO2 NO					PAMS		
Cache	Smithfield	1/1	1/1	Х	1/1	1/6		Х	Х		Х	Х						Х	Х
Weber	Harrisville	1/1	1/1	Х	1/1						Х	Х			Х				Х
Davis	Bountiful (Viewmont)	1/1	1/1	Х	1/1	1/6			Х		Х	х					Х	Х	Х
	Antelope Island***																		Х
Salt Lake	Air Monitoring Center*	1/1	1/1	Х	1/1		х				х	х		x	х	х			Х
	Hawthorne	1/1	1/1	Х	1/1			Х	Х		Х	Х	Х	Х	Х		Х		Х
	Herriman #3	1/1		Х	1/1	1/1	Х	Х			Х	Х							Х
	Monticello**	1/1	1/1	Х	1/1						Х	Х			Х			Х	Х
	Near Road	1/1		Х							Х	Х			Х				
	Prison**	1/1	1/1	Х							Х	Х			Х			Х	Х
	Rose Park	1/1	1/1	Х							Х	Х		Х	Х				Х
	Saltair***	1/1		Х															Х
	Copperview	1/1		Х							Х	Х		Х	Х				Х
Tooele	Erda	1/1	1/1	Х							Х	Х							Х
	Badger Island, BI***																		Х
Utah	Lindon	1/1	1/6	Х	1/1			Х	Х		Х	Х			Х				Х
	Spanish Fork	1/1	1/1	Х							Х	Х							Х
Uintah	Vernal	1/1		Х							Х	Х							Х
Duchesne	Roosevelt	1/1		Х							Х	Х							Х
Carbon	Price #2										Х	Х							Х
Iron	Enoch	1/1		Х							Х	Х							Х
Garfield	Escalante										Х								
Washington	Hurricane	1/1		Х							Х	Х							Х

Table 4. Measured parameters at the sampling stations in Utah air monitoring network.

*Site re-located in 2019; **Site setup in progress; *** remote stations. Abbreviations: MET: meteorological parameters; O₃: ozone; NO₂: nitrogen dioxide; NO_x: nitrogen oxides; NO_y: total reactive nitrogen; NH₃: ammonia; SO₂: sulfur dioxide; CO: carbon monoxide.

3. Network Technical Assessment

The network assessment was conducted using the tools provided by U.S. EPA's NetAssess2020 app⁵ including the correlation matrix, removal bias, exceedance probability and area served tools. The assessment consisted of evaluating the sites' monitoring objectives and spatial scales (40 CFR, part 58 Appendix D) as well as determining redundant sites or additional sites for inclusion within a geographical area. The assessment also involved evaluating whether the number of monitors within a CBSA meets minimum federal monitoring requirements (40 CFR, part 58, appendix D 4.7) and whether the sites meet EPA siting criteria (40 CFR, part 58). Population estimates within a CBSA were determined using the latest available census data and the population projections report produced by Utah's Governor's Office of Management and Budget⁴. Sites redundancy was determined using the correlation matrix and removal bias tools. The correlation matrix provides the Pearson correlation coefficient (R), relative concentration difference and distance between pairs of sites, where potentially redundant sites exhibit low average relative difference and high correlations with their respective counterparts. The removal bias tool provides an estimate of the concentration at a given location if its existing monitor was removed. The tool uses the nearest monitors to each site to estimate the concentration at the site's location if its monitor had never existed, then calculates the bias by taking the difference between the interpolated value and the measured concentration. A near-zero value indicates a negligible bias if the monitor were removed. On the other hand, a positive or negative average bias suggests that the surrounding monitors would respectively indicate an estimated concentration that is larger or lower than the measured concentration, if the site being examined were removed. Determining whether extra sites should be added to the network was based on results obtained by applying the area served and exceedance probability tools, which provide geographic and demographic information for a given area and indicate the probability that the area will exceed a certain threshold at least once a year.

3.1 Particle Monitoring 3.1.1 FRM PM_{2.5} Network

UDAQ currently operates 24-hour Federal Reference Method (FRM) PM_{2.5} samplers throughout the state to demonstrate compliance with NAAQS, evaluate population exposure, support SIP development and model performance evaluation as well as monitor PM levels in source and receptor areas.

3.1.1.1 Area and Population Served

The area and population served, including sensitive groups (elderly and children), by each FRM $PM_{2.5}$ monitor are shown in Table 5. In this analysis, the sites are ranked according to the population they represent, thus reflecting the site's importance in representing population exposure.

⁴ <u>https://gomb.utah.gov/budget-policy/utahseconomy/</u>

⁵ <u>https://www.epa.gov/amtic/ambient-air-monitoring-network-assessment-guidance-documents</u>

	Population Served											
Site	Total Population	Total Male	Total Population	Area Served								
		Population	Population	Aged 65 and over	Aged o to 4	(Km²)						
Lindon (LN)	316,526	158,843	157,683	23,676	32,636	1,200						
Spanish Fork (SF)	255,238	128,660	126,578	20,142	26,135	26,089						
Hawthorne (HW)	205,851	103,533	102,318	23,204	14,235	644						
Bountiful Viewmont (BV)	159,506	79,648	79,858	16,608	14,926	6,041						
Smithfield (SM)	108,389	53,887	54,502	8,552	11,057	5,260						
Rose Park (RP)	82,843	42,919	39,924	5,985	8,504	123						
Harrisville (HV)	77,538	39,018	38,520	7,659	6,887	1,278						
Erda (ED)	62,899	31,726	31,173	4,833	6,481	26,391						
Air Monitoring Center (AMC)	NA	NA	NA	NA	NA	NA						

Table 5. Area and population served by FRM PM_{2.5} samplers in Utah air monitoring network.

3.1.1.2 Historical Trends and Deviations from NAAQS

The National Ambient Air Quality Standards for PM_{2.5} were initially established in 1997 then subsequently revised in December 2006 and 2012. EPA lowered the 24-hour PM_{2.5} standard from 65 μ g/m³ to 35 μ g/m³ in 2006 then lowered the annual standard from 15 μ g/m³ to 12 μ g/m³ in 2012. The 24-hour standard is met when the three-year average of the 98th percentile 24-hr values is less than or equal to 35 μ g/m³. The annual standard is met when the three-year average of the annual average of the 98th percentile 24-hr concentration and the three-year average of the 98th percentile 24-hr concentration respectively for the 2000-2019 period.

Figure 2 and Figure 3 show that the state complies with the annual standard of $12 \mu g/m^3$ and with the 24-hour standard of $35 \mu g/m^3$ during the last three- year average. For each site, the number of exceedances of 24-hr PM_{2.5} NAAQS during 2017-2019 is shown in Table 6.

Figure 2. PM_{2.5} 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM PM_{2.5} during the period 2000-2019

Figure 3. Annual design value trends and comparison to NAAQS for FRM/PM_{2.5} during the period 2000-2019.

Number of Exceedances of PM _{2.5} 24-hr NAAQS (primary/secondary)									
Site	2017	2018	2019						
Brigham City (BR)	7/7	0/0	1/1						
Smithfield (SM)	8/8	1/1	3/3						
Bountiful Viewmont (BV)	3/3	0/0	0/0						
Roosevelt (RS)*	1/1	1/1	0/0						
Magna (MG)	1/1	0/0	1/1						
Hawthorne (HW)	8/8	1/1	2/2						
Rose Park (RP)	6/6	2/2	1/1						
Herriman (H3)	2/2	2/2	1/1						
Erda (ED)	0/0	1/1	1/1						
Vernal (V4)*	0/0	0/0	0/0						
Lindon (LN)	4/4	4/4	1/1						
Spanish Fork (SF)	3/3	3/3	0/0						
Hurricane (HC)*	0/0	0/0	0/0						
Ogden (O2)	7/7	0/0	1/1						
North Provo	3/3	NA	NA						
Copperview (CV)*	NA	2/2	3/3						
Near Road (NR)*	NA	NA	3/3						
Enoch (EN)*	NA	0/0	0/0						
Harrisville (HV)	NA	NA	NA						
Air Monitoring Center (AMC)	NA	NA	NA						

Table 6. Number of exceedances of $PM_{2.5}$ 24-hr NAAQS for the period 2017-2019.

Excluding values corresponding to special events. *denotes sites using exclusively continuously FEM PM_{2.5}

3.1.1.3 Site-by-Site Analysis

Federal regulations require state and local agencies to operate $PM_{2.5}$ sites for various locations, depending upon MSA boundaries and population size as well as the most recent three-year design value, expressed as a percentage of the $PM_{2.5}$ NAAQS (40 CFR, part 58, appendix D). Minimum federal monitoring requirements for $PM_{2.5}$ sampling and the number of active FRM $PM_{2.5}$ monitors in each CBSA are presented in Table 7 and Table 8, respectively.

Table 7. Minimum monitoring requirements for $PM_{2.5}$.

MSA population	Most recent 3-year design value ≥ 85% of any PM2.5 NAAQS	Most recent 3-year design value <85% of any PM _{2.5} NAAQS
>1,000,000	3	2
500,000-1,000,000	2	1
50,000-<500,000	1	0

Table 8. Number of active FRM PM_{2.5} monitors in each CBSA.

CBSA	Counties	Census 2010*	Population estimate (2020)*	Population estimate (2030)*	Minimum number of required monitors	Number of active monitors				
Salt Lake City MSA	Tooele, UT Salt Lake. UT	1,087,873	1,255,736	1,440,329	3	3				
Provo-Orem MSA	Juab, UT Utah, UT	526,810	682,314	850,304	2	2				
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	597,159	681,907	766,860	2	2				
Heber µSA	Wasatch, UT	23,530	32,741	44,549	0	0				
Logan UT-ID MSA	Cache, UT Franklin, ID	112,656	139,228	168,136	1	1				
Saint George MSA	Washington, UT	138,115	196,762	280,558	0	0				
Cedar City μSA	Iron, UT	46,163	57,055	71,687	0	0				
Price μSA	Carbon, UT	21,403	21,602	22,092	0	0				
Vernal µSA	Uintah, UT	32,588	38,982	41,099	0	0				
Summit Park µSA	Summit, UT	36,324	45,491	56,890	0	0				
* <u>https://gomb.uta</u>	* https://gomb.utah.gov/budget-policy/utahseconomy									

24

Salt Lake City CBSA

The UDAQ currently operates four FRM $PM_{2.5}$ monitors in the Salt Lake City CBSA, meets federal monitoring requirements (Table 8). According to federal regulations (40 CFR, part 58, appendix D, table D-5), a CBSA with a population above 1,000,000 and the most recent three-year design value greater than 85% of $PM_{2.5}$ NAAQS, must have a minimum of three active $PM_{2.5}$ monitors. The four monitors are located at Hawthorne (HW), Erda (ED), Rose Park (RP) and the Air Monitoring Center (AMC), which operate on a daily schedule.

Figure 4 shows the surface probability map for exceedance (2014-2016) of the 24-hr PM_{2.5} NAAQS. It provides information about the spatial distribution of the highest daily values for PM_{2.5} and their probability to exceed 35 μ g/m³. Most monitors located at Salt Lake CBSA are in areas where the maximum probability of PM_{2.5} exceeding 35 ug/m³ is greater than 75%, except for ED where the probabilities was lower than 20%, nonetheless, a decrease in the 98th percentile of 24-hr concentrations for the last 3 years is observed in Figure 5.

Results of two-tailed paired t-test for FRM $PM_{2.5}$ pairings in Salt Lake City CBSA are shown in Table 9 and Table 10. The concentrations measured at HW and RP sites are strongly correlated ($R \ge 0.90$) with a small average relative difference. In addition, the concentrations measured at HW and RP sites exhibit moderate correlation with concentrations measured at ED site.

Figure 4. Area served and surface probability map for PM_{2.5}. 24-hr NAAQS of 35 μ g/m³. Black font: stations operating FRM and FEM instruments, white font: stations operating FEM and red font: station discontinued.

Figure 5. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019.

Table 9. Pearson correlation coefficient (R), average relative concentration difference and distance between pairs of sites in Salt Lake City CBSA.

Site 1	Site 2	R	N	Absolute average relative difference	Distance (km)
Hawthorne	Rose Park	0.94	1050	1.77	7
Hawthorne	Erda	0.73	1074	3.12	43
Rose Park	Erda	0.76	1029	3.31	41

Table 10. Results of two-tailed paired t-test for FRM PM2.5 pairings in Salt Lake City CBSA.

	HW	RP	HW	ED	RP	ED
N*	881	881	882	882	899	899
Mean	7.4	8.3	7.7	6.5	8.3	6.8
Standard deviation	7	7.2	7.3	5.9	7.2	6.7
Standard error	0.2	0.2	0.2	0.20	0.2	0.2
Mean difference	0.9		1.2		1.5	
Standard deviation	2.7		5.4		4.1	
Standard error	0.1		0.2		0.1	
Correlation	0.9		0.7		0.8	
	P < 0.001		P < 0.001		P < 0.001	

*Data covering period 01/01/2017-10/31/2019

Provo-Orem CBSA

The UDAQ operates two FRM PM_{2.5} monitors within the Provo-Orem CBSA, which is in accordance with federal monitoring requirements (see Table 8). These are located at Lindon (LN) and Spanish Fork (SF) sites and operate on a daily schedule. North Provo (NP) and LN stations were consolidated in January 2017. Figure 6 shows the surface probability map for exceedance of the 24-hr PM_{2.5} NAAQS for the period 2014-2016. It provides information about the spatial distribution of the highest daily values for PM_{2.5} and their probability to exceed 35 μ g/m³. The two stations are located in areas where the maximum probability of PM_{2.5} exceeding 35 ug/m³ was lower than 20% for that period. Figure 7 displays a trend plot of the PM _{2.5} 98th percentile of the 24-hr concentrations; it has observed a decreasing trend in the concentration levels for 24-hour standard of 35 μ g/m³ after 2014, with exception of SF 2018 average value. The concentrations measured at the two sites were discreetly correlated (R =0.74) with an average relative concentration difference of 2.73 (see Table 11). UDAQ will continue monitoring PM_{2.5} at these sites to fulfill the federal monitoring requirements.

Figure 6. Area served and surface probability map for $PM_{2.5}$. 24-hr NAAQS of 35 µg/m³. Black font: stations operating FRM and FEM instruments and red font: station discontinued or combined.

Figure 7. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019.

Table 11. Pearson correlation coefficient (R), average relative concentration difference between pairs of sites in Provo-Orem CBSA.

Site 1	1 Site 2		N	Absolute average relative difference	Distance (km)
Lindon	Spanish Fork	0.74	848	2.73	23

Ogden-Clearfield CBSA

The UDAQ operates two active FRM $PM_{2.5}$ monitors within the Ogden-Clearfield CBSA, which complies with minimum federal monitoring requirements (see Table 8). The sites are located at Bountiful (BV) and Harrisville (HV) and operate on a daily schedule. The surface probability map for exceedance of the 24-hr $PM_{2.5}$ NAAQS for the period 2014-2016 (Figure 8) indicates that BV and the re-located Ogden (O2) are located in areas where the maximum probability of $PM_{2.5}$ exceeding 35 ug/m3 was greater than 70% and for Brigham City (BR), station dismissed, lower than 20%. Figure 9 shows a decrease trend of the $PM_{2.5}$ 98th percentile of the 24-hr concentration levels for the last three years and levels below the 35 ug/m³ standard value for the last two years.

Some recent changes in the $PM_{2.5}$ monitoring network are observed in the historical trends, comprising the termination of BR (summer 2019), due to construction projects to expand the parking lot of the school where the monitoring station was sited, and the consolidation of the O2 and HV stations (summer 2019).

Table 12 displays the Pearson correlation coefficients (R), average relative concentration difference and distance between pairs of sites in Ogden-Clearfield CBSA. The concentrations at the sites were strongly correlated ($R \ge 0.82$) with relative concentration differences between 2.3 and 2.7.

Figure 8. Area served and surface probability map for $PM_{2.5}$. 24-hr NAAQS of 35 μ g/m³. Black font, operating FRM and FEM instruments and red font station(s) discontinued or consolidated.

Table 12. Pearson correlation coefficients (R), average relative concentration difference and distance between pairs of sites in Ogden-Clearfield CBSA.

Site 1	Site 2	R	N	Absolute	Distance (km)	
				relative		
				difference		
Brigham City	Bountiful	0.82	991	2.7	66	
Brigham City	Ogden	0.85	964	2.3	32	
Bountiful	Ogden	0.83	1061	2.4	34	

Figure 9. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019.

Logan CBSA

The UDAQ currently operates one FRM monitor within the Logan CBSA at Smithfield (SM), which complies with federal requirements (see Table 8). The station was established in January 2015 to replace the Logan site and is located in the same county, but farther north. SM has been operating to measure FRM PM_{2.5} and its values are close or slightly exceeding the 24-hr NAAQS, as shown in Figure 10.

Figure 10. $PM_{2.5}$ 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM $PM_{2.5}$ during the period 2000-2019.

An evaluation of the FRM PM_{2.5}. The Utah monitoring network is presented in Table 13.

Site	County	Monitor type	Spatial scale	Monitoring objective	Pollutant/M ethod	2017-2019 DV	Value	Recommendat ion
						(ug/m³) (% of std)		
Hawthorne		SLAMS	Population Neighborhood	Population exposure	PM _{2.5} FRM/Manual gravimetric	29.7 (85%)	High – the average last three years design value was close to PM _{2.5} NAAQS, PAMS, NCore site; supports model performance evaluation and SIP development	Continue monitoring
AMC	Salt Lake	SLAMS	Population Neighborhood	Population exposure Precision and accuracy assessment	PM _{2.5} FRM/ Manual gravimetric PM _{2.5} FRM/ Manual gravimetric co-located	NA*	New - established as a potential replacement of the Rose Park station	Established in 2019 Continue monitoring
Rose Park		SLAMS	Population Neighborhood	Population exposure Precision and accuracy assessment	PM _{2.5} FRM/ Manual gravimetric PM _{2.5} FRM/ Manual gravimetric co-located	30.9 (88%)	High – design value above PM _{2.5} NAAQS; supports model performance evaluation and SIP development; site is redundant for PM _{2.5} with Hawthorne (HW) site; however, has been selected as backup station for HW	Continue monitoring
Erda	Tooele	SLAMS	Population Neighborhood	Population exposure	PM2.5 FRM/ Manual gravimetric	24.8 (71%)	High–established to replace Tooele #3; it exhibits temporary variations related to the others SLAMS located in Salt Lake	Continue monitoring

Table 13. List of FRM $PM_{2.5}$ monitors in Utah air monitoring network and recommendations for network modification.

Table 13 (cont'd.)

Site	County	Monitor type	Spatial scale	Monitoring objective	Pollutant/Method	2017-2019 DV (ug/m ³) (% of std)	Value	Recommendation
Lindon	Utah	SLAMS	Population Neighborhood	Population exposure Precision	PM _{2.5} FRM/ Manual gravimetric PM _{2.5} FRM/ co-	26.2 (75%)	High – the average last three years design value was below PM _{2.5} NAAQS; this site supports model performance evaluation/SIP	Continue monitoring
				accuracy assessment	gravimetric		development	
Spanish Fork		SLAMS	Transport Regional	Population exposure	PM _{2.5} FRM/ Manual gravimetric	31.6 (90%)	High – the average last three years design value was close to PM _{2.5} NAAQS; supports model performance evaluation and SIP development	Relocate site due to logistical issues
Brigham City	Box Elder	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} FRM/ Manual gravimetric	30 (86%)	Moderate – the average last three years design value was close to PM _{2.5} NAAQS; this site supports model performance evaluation/SIP development	Shut down in 2019 Look for a location for replaced it.
Bountiful Viewmont	Davis	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} FRM/ Manual gravimetric	26.7 (76%)	High the average last three years design value was below PM _{2.5} NAAQS; supports model performance evaluation and SIP development	Continue monitoring

* Site established in 2019

Table 13 (cont'd.)

Site	County	Monitor type	Spatial scale	Monitoring objective	Pollutant/Method	2017-2019 DV (ug/m³) (% of std)	Value	Recommendation
Ogden #2	Weber	SLAMS	High Neighborhood	Population exposure	PM2.5 FRM/ Manual gravimetric	24.7 (71%)	Moderate – the average last three years design value was below PM _{2.5} ; the only site that provides PM _{2.5} monitoring for Weber county; supports model performance evaluation and SIP development	Combined with Harrisville
Smithfield	Cache	SLAMS	Population Neighborhood Precision and accuracy assessment	Population exposure PM _{2.5} FRM/ co- located manual gravimetric	PM2.5 FRM/ Manual gravimetric	33 (94%)	High - the average last three years design value was close to PM _{2.5} NAAQS PM _{2.5} NAAQS; supports model performance evaluation and SIP development	Continue monitoring

3.1.2 FEM PM_{2.5} Network

The UDAQ currently uses Federal Equivalent Method (FEM) $PM_{2.5}$ samplers at sixteen sampling sites distributed throughout the state. Some monitors operate in co-location with FRM filter-based measurements for comparability assessment. Once the comparability assessment criteria are met, the FEM continuous monitors will replace existing FRM monitors in the network, which will reduce the resources and labor required to maintain the FRM samplers and handle the filter samples.

Currently, data obtained from the continuous monitors are primarily used to support forecasting and reporting the Air Quality Index (AQI) information at the AIRNow website (<u>www.airnow.gov</u>).

A plot showing the trends for FRM and FEM $PM_{2.5}$ measurements is shown in Figure 11 and an evaluation of FEM $PM_{2.5}$ continuous monitors in Utah air monitoring network is provided in Table 14.

Remarkably, at the time of the certification of the 2019 $PM_{2.5}$ data, all locations in Utah are attaining the $PM_{2.5}$ NAAQS.

Figure 11. PM_{2.5} 98th percentile 24-hr (ug/m³) and comparison to NAAQS for FRM/FEM PM_{2.5} during the period 2000-2019.
Site	County	Monitor Type	Spatial scale	Monitoring objective	Pollutant/Method	2017-2019 DV (ug/m³) (% of std)	Value	Recommendation
Hawthorne	Salt Lake	SLAMS	Population	Air quality	PM _{2.5} continuous/	29.7 (85 %)	High- supports AQI	Continue
			Neighborhood	index	SHARP 5030i		reporting/forecasting; NCore site	monitoring
Rose Park		SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	30.9 (88%)	Medium- supports AQI reporting/forecasting	Continue monitoring
AMC		SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	NA*	New - established as a potential replacement of the Rose Park station	Established in 2019 Continue
Copperview		SLAMS	Population Neighborhood	Air pollution index	PM2.5 continuous/ SHARP 5030i	30.2 (86 %)	High – Identified as area for assessing population exposure in southeast Salt Lake County. It supports measurement comparisons in south valley with those at the NCORE station and trace instruments in the network	Continue monitoring
Near Road	Murray	New SPM	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	31 (89%) **	High – recently established to assess population exposure and to monitor vehicular contribution to air pollution as part of the EPA NO ₂ monitoring program	Continue monitoring
Herriman	Herriman	SLAMS	Population Neighborhood		PM _{2.5} continuous/ SHARP 5030i	25.3 (72%)	High-supports AQI reporting/forecasting	Continue monitoring
Erda	Tooele	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	24.8 (71%)	High –it exhibits temporary variations related to the others SLAMS located in Salt Lake CBSA	Continue monitoring

Table 14. List of FEM PM_{2.5} samplers in Utah air monitoring network and recommendations for network modification.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Pollutant/Method	2017-2019 DV (ug/m ³) (% of std)	Value	Recommendation
Smithfield	Cache	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	33 (94%)	High-supports AQI reporting/forecasting	Continue monitoring
Bountiful	Davis	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	26.7 (76%)	High- supports AQI reporting/forecasting	Continue monitoring
Lindon	Utah	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	26.2 (75%)	High-supports AQI reporting/forecasting	Continue monitoring
Spanish Fork	Utah	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	31.6 (90 %)	High-supports AQI reporting/forecasting	Continue monitoring
Enoch	Iron	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} continuous/ SHARP 5030i	12.5 (36%)**	Moderate- the only monitor that provides PM _{2.5} monitoring for	Continue monitoring
Hurricane	Washington	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	14.1 (40%)	Moderate- the only monitor that provides PM _{2.5} monitoring for Washington county	Continue monitoring
Vernal	Uintah	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	18.6 (53%)	Moderate – supports AQI reporting/forecasting	Continue monitoring
Roosevelt	Duchesne	SLAMS	Population Neighborhood	Air quality index	PM _{2.5} continuous/ SHARP 5030i	24.8 (71%)	Moderate – supports AQI reporting/forecasting	Continue monitoring

Table 14 (cont.). List of FEM PM_{2.5} samplers in Utah air monitoring network and recommendations for network modification.

*Site established in 09/01/2019; ** based only in two year values. This monitor is conducting the required 3 years of monitoring to establish a baseline DV. Once established we can determine if turning it off is called for. Baseline required due to population growth.

3.1.3 FRM PM₁₀ Network

The UDAQ currently operates seven 24-hour Federal Reference Method (FRM) PM₁₀ samplers throughout the state (Figure 12) to demonstrate compliance with NAAQS, evaluate population exposure, support PM maintenance plans and monitor PM levels in high-concentration areas.

Figure 12. Location of the PM $_{10}$ monitoring sites. Black font represents sites that are currently operating; blue denotes relocated or consolidated (HV is the site for the re-located O2) and red denotes stations discontinued.

3.1.3.1 Historical trends and deviations from NAAQS

In 1987, EPA established a 24-hour air quality standard of 150 μ g/m³ for PM₁₀. The standard cannot be exceeded more than once per year on average over three years.

Utah is occasionally affected by exceptional events, such as dust storms and wildfires, leading to high PM_{10} concentrations. Excluding data impacted by exceptional events, Utah has been in compliance with the PM_{10} NAAQS, as revealed in Figure 13, which shows the second-highest 24-hour PM_{10} concentration (excluding values influenced by exceptional events). Moreover, only one exceedance of the 24-hr PM_{10} standard was recorded during the period 2017-2019, as shown in

Table 15.

Figure 13. Comparison to NAAQS and trends in second-highest 24-hour PM₁₀ concentration for the period 2000-2019. BV site considered SPM for PM₁₀.

Number of Exceedances of PM ₁₀ 24-hr NAAQS										
(primary/secondary)										
Site	2017	2018	2019							
Smithfield (SM)	0/0	0/0	0/0							
Bountiful	0/0	0/0	0/0							
Viewmont (BV)*										
Hawthorne (HW)	0/0	0/0	0/0							
Herriman (H3)	1/1	0/0	0/0							
Lindon (LN)	0/0	0/0	0/0							
Ogden (O2)	0/0	0/0	0/0							

Table 15. Number of exceedances of PM₁₀ 24hr-2006 NAAQS for the period 2017-2019.

*Special Purpose Monitor (SPM) for PM₁₀

3.1.3.2 Site-by-Site Analysis

Federal regulations require that state and local agencies operate PM_{10} sites for various locations, depending upon MSA boundaries and population size, as well as ambient PM_{10} concentrations relative to the PM_{10} NAAQS (40 CFR, appendix D, part 58). Minimum federal monitoring requirements for PM_{10} sampling and for the number of active FRM PM_{10} monitors in each CBSA are presented in Table 16 and Table 17, respectively.

MSA population	High concentration ¹	Medium concentration ²	Low concentration ³
>1,000,000	6-10	4-8	2-4
500,000- 1,000,000	4-8	2-4	1-2
250,000-500,000	3-4	1-2	0-1
100,000 - 250,000	1-2	0-1	0

Table 16. Minimum monitoring requirements for PM₁₀.

¹High concentration areas are those for which ambient PM_{10} data show ambient concentrations exceeding the PM_{10} NAAQS by 20 percent or more.

²Medium concentration areas are those for which ambient PM_{10} data show ambient concentrations exceeding 80 percent of the PM_{10} NAAQS.

 3 Low concentration areas are those for which ambient PM₁₀ data show ambient concentrations less than 80 percent of the PM₁₀ NAAQS.

CBSA	Counties	Census 2010*	Population estimate (2020)	Population estimate (2030)	Minimum number of required monitors*	Number of active monitors
Salt Lake City MSA	Tooele, UT Salt Lake, UT	1,087,873	1,255,736	1,440,329	2-4	2 1**
Provo-Orem MSA	Juab, UT Utah, UT	526,810	682,314	850,304	1-2	1
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	597,159	681,907	766,860	1-2	1
Heber μSA	Wasatch, UT	23,530	32,741	44,549	0	0
Logan UT-ID MSA	Cache, UT Franklin, ID	112,656	139,228	168,136	1	1
Saint George MSA	Washington, UT	138,115	196,762	280,558	0	0
Cedar City µSA	Iron, UT	46,163	57,055	71,687	0	0
Price μSA	Carbon, UT	21,403	21,602	22,092	0	0
Vernal µSA	Uintah, UT	32,588	38,982	41,099	0	0
Summit Park μSA	Summit, UT	36,324	45,491	56,890	0	0

Table 17. Number of active FRM PM₁₀ monitors in each CBSA.

* Excluding exceptional events; ** established in 2019.

Salt Lake City CBSA

The UDAQ currently operates three FRM PM_{10} monitors in Salt Lake City CBSA to meet federal monitoring requirements. According to federal regulations (40 CFR, part 58, appendix D, table D-5), a CBSA with a population above 1,000,000 and ambient PM_{10} concentrations less than 80 percent of the PM_{10} NAAQS, must have a minimum of two active PM_{10} monitors. The monitors located at Hawthorne (HW), Herriman #3 (H3) and the Air Monitoring Center (AMC) operate on a daily schedule.

Results of the two-tailed paired t-test for FRM PM_{10} monitoring stations at Salt Lake City CBSA are shown in Table 18. The correlation analysis showed that PM_{10} levels at H3 and HW were moderately correlated (R = 0.69), with HW displaying larger concentrations than H3. Moreover, the relative difference between the concentrations at the two sites suggest a difference in PM_{10}

levels between the monitoring sites. The UDAQ, therefore, recommends continuing PM_{10} sampling at all sites in the Salt Lake City CBSA.

Table 18. Results of two-tailed paired t-test for FRM PM₁₀ pairings in Salt Lake City CBSA.

Site 1	Site 2	R	N	Absolute average relative difference	Distance (km)
Hawthorne	Herriman	0.69	946	8.38	30

Provo-Orem CBSA

The UDAQ operates one FRM PM_{10} monitor within the Provo-Orem CBSA, which is located at Lindon (LN) and satisfies minimum federal monitoring requirements (see Table 17).

Ogden-Clearfield CBSA

The UDAQ operates one FRM PM_{10} monitor within the Ogden-Clearfield CBSA, which satisfies minimum federal monitoring requirements (see Table 17). The monitor located at Ogden #2 (O2) was re-located at Harrisville (HV) station and operates on a daily schedule. Bountiful (BV) station operates one PM ₁₀ sampler every six days but it is considered as SPM.

Logan CBSA

The UDAQ operates one FRM monitor at the Logan CBSA, which satisfies federal monitoring requirements (see Table 17). This is located at Smithfield site. The UDAQ does not recommend making any changes to the monitoring network within this CBSA.

3.1.4 Continuous PM₁₀ Network

Currently, the UDAQ is not operating continuous PM_{10} samplers; however, it is considering collocating continuous PM_{10} monitors with FRM filter-based measurements for comparability assessment. Once the comparability assessment criteria are met, the FEM continuous monitors will replace existing FRM monitors in the network, which will reduce the resources and labor required to maintain the FRM samplers and handle the filter samples.

A summary of the FRM PM₁₀ samplers in Utah air monitoring network and recommendations for network modification are presented in Table 19.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Pollutant/Method	Value	Recommen dation
Hawthorne	Salt Lake	SLAMS	Population Neighborhood	Population exposure	PM10 FRM/ Manual gravimetric	High – design value location for PM ₁₀ NAAQS; NCore site; supports PM ₁₀ maintenance demonstration	Continue monitoring
Herriman #3		SLAMS	Population Neighborhood	Population exposure	PM10 FRM/ Manual gravimetric	High- site established to assess population exposure in southwest Salt Lake County	Continue monitoring
Lindon	Utah	SLAMS	Population Neighborhood	Population exposure	PM ₁₀ FRM/ Manual gravimetric	High – site supports PM ₁₀ maintenance demonstration and it is a design value location for PM ₁₀ NAAQS	Continue monitoring
Smithfield	Cache	SLAMS	Population Neighborhood	Population exposure	PM10 FRM/ Manual gravimetric	High- site supports PM ₁₀ maintenance demonstration and it is a design value location for PM ₁₀ NAAQS	Continue monitoring
Harrisville	Weber	SLAMS	Population Neighborhood	Population exposure	PM ₁₀ FRM/ Manual gravimetric	High – design value location for PM ₁₀ NAAQS, this is the only monitor that provides PM ₁₀ for Weber county	Continue monitoring

Table 19. List of FRM PM₁₀ samplers in Utah air monitoring network and recommendations for network modification.

3.2 Gaseous Monitoring 3.2.1 Ozone Network 3.2.1.1 Area and Population Served

The area and population served, including sensitive demographics, by each O_3 monitor are shown in Table 20, where the sites are sorted according to the population they represent.

Site	Population Served					
	Total Population	Total Male Population	Total Female Population	Total Population, Age 65 and over	Total Population, Age 0 to 4	Served (km²)
Copperview	295565	148965	146600	26116	23656	262
Lindon	286756	143604	143152	21137	30029	378
Spanish Fork	219728	110750	108978	15269	23125	10681
Near Road	261818	130374	131444	26612	22835	131
Hawthorne	180815	90920	89895	12801	20799	377
Herriman	156024	78046	77978	4899	21288	1170
Bountiful	146880	73231	73649	15527	13868	1946
Hurricane	131979	65044	66935	22485	12529	15423
Smithfield	119608	59519	60089	10426	12043	6923
Erda	62899	31726	31173	4833	6481	26391
Harrisville	77538	39018	38520	7659	6887	1278
Enoch	59808	29962	29846	6508	5482	22461
Escalante	36583	18481	18102	4999	3024	35863
Price	41662	20901	20761	5516	3543	18025
Vernal	9511	4844	4667	862	1099	37
Rose park	8243	42919	39924	5985	8504	126
Roosevelt	7632	3784	3848	630	971	71

Table 20. Area and population served by O_3 monitors in Utah air monitoring network.

3.2.1.2 Exceedance Probability

Figure 14 shows the probability that O_3 in a given area will exceed 70 ppb at least one day in a year. It is shown that most monitors are in areas where the maximum probability of O_3 exceeding

70 ppb is greater than 70%. Note that some of the monitors shown in Figure 14 are located at sites within the Interagency Monitoring of Protected Visual Environments (IMPROVE) network.

Figure 14. Area served and surface probability map for O₃.

3.2.1.3 Historical Trends and Deviations from NAAQS

Ozone is formed through photochemical reactions between nitrogen oxides (NOx) and volatile organic compounds (VOCs). Its production is a year-round phenomenon, with highest O₃ levels generally occurring during summer when solar radiation and temperature are strongest. However, Utah is often susceptible, during wintertime inversions, to elevated levels of O₃ in the Uinta Basin. High-pressure weather systems and high solar zenith angle during winter lead to cold-air pools that periodically trap precursor gases, most notably VOCs and NO_x, in the valleys between the Wasatch and Oquirrh Mountains. These precursor gases subsequently react in the stagnant air to form O₃. Snow cover can also enhance O₃ formation by increasing sunlight reflection (surface albedo) into the atmosphere.

The current 8-hr NAAQS for O_3 is 70 ppb. The standard is met when the annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years, is less than 70 ppb. The number of NAAQS exceedances at the sampling sites for the period 2017-2019 is provided in **Error! Reference source not found.** Figure 15 and Figure 16 show the three-year average of the annual fourth-highest daily maximum 8-hour O_3 concentration and the trends of the annual fourth-highest 8-hour O_3 concentration at the sampling sites. The same information presented in Figure 16 was sorted by site locations for better visualization of the values and is shown in Figure 17. Figures 15-17 show that the 2017-2019 standard was exceeded for most of the monitoring and it is observed that the O_3 levels in 2019 are above the NAAQS standards for Salt Lake City, Davis and Duchesne counties.

Number of Exceedances of O ₃ NAAQS (primary)							
Site	2017	2018	2019				
Smithfield	0/0	3/3	0/0				
Bountiful Viewmont	24/24	15/15	5/5				
Hawthorne	22/22	11/11	8/8				
Herriman	23/23	23/23	4/4				
Lindon	0/0	22/22	0/0				
Spanish Fork	4/4	7/7	0/0				
Copperview	17/17	19/19	1/1				
Hurricane	0/0	2/2	0/0				
Erda	0/0	8/8	1/1				
Harrisville	14/14	14/14	1/1				
Enoch	NA	0/0	0/0				
Escalante	0/0	3/3	0/0				
Vernal	0/0	2/2	16/16				
Near Road	NA	0/0	0/0				
Rose park	NA	20/20	5/5				
Roosevelt	8/8	9/9	12/12				
Price	0/0	5/5	1/1				
Brigham City	3/3	8/8	0/0				
Ogden	16/16	22/22	0/0				
Air Monitoring Center	NA	NA	NA				

Table21.NumberofexceedancesofO38-hr2008NAAQSfortheperiod2017-2019.

* Excluding values corresponding to concurred events.

Figure 15. 8-hr design value trends and comparison to NAAQS for O₃ during the period 2009-2019.

Figure 16. Trends in annual fourth-highest eight-hour O₃ concentration and comparison to NAAQS.

Figure 17. Trends in annual fourth-highest eight-hour O3 concentration and comparison to NAAQS

3.2.1.4 Site-by-Site Analysis

Federal regulations require state and local agencies to operate O_3 sites for various locations, depending on MSA boundaries and population size as well as most recent three-year design value, expressed as a percentage of the O_3 NAAQS (40 CFR, appendix D, part 58). Minimum federal monitoring requirements for O_3 sampling and for the number of active O_3 monitors in each CBSA are presented in Table 22 and Table 23, respectively.

MSA population	Most recent 3-year design value ≥85% of any O₃ NAAQS	Most recent 3-year design value <85% of any O₃ NAAQS
>10,000,000	4	2
4,000,000- 10,000,000	3	1
350,000- <4,000,000	2	1
50,000- <350,000	1	0

Table 22. Minimum monitoring requirements for O₃.

CBSA	Counties	Census 2010*	Population estimate (2020)*	Population estimate (2030)*	Minimum number of required monitors	Number of active monitors
Salt Lake City MSA	Tooele, UT Salt Lake, UT	1,087,873	1,255,736	1,440,329	2	3 3*
Provo-Orem MSA	Juab, UT Utah, UT	526,810	682,314	850,304	2	2
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	597,159	681,907	766,860	2	2
Heber µSA	Wasatch, UT	23,530	32,741	44,549	0	0
Logan UT-ID MSA	Cache, UT Franklin, ID	112,656	139,228	168,136	0	1
Saint George MSA	Washington, UT	138,115	196,762	280,558	1	1
Cedar City µSA	Iron, UT	46,163	57,055	71,687	0*	1
Price µSA	Carbon, UT	21,403	21,602	22,092	0	1
Vernal µSA	Uintah, UT	32,588	38,982	41,099	0	2
Summit Park µSA	Summit, UT	36,324	45,491	56,890	0	0

Table 23. Number of active O₃ monitors in each CBSA.

*3-year design value unavailable as sites established in 2018 and 2019

Salt Lake City CBSA

According to federal regulations (40 CFR, part 58, table D2), a CBSA with a population between 350,000 and 4,000,000 and the most recent 3-year design value greater than 85% of O₃ NAAQS, must have a minimum of two active O₃ monitors. Furthermore, at least one O₃ site for each MSA, or CSA, must be designed to record the maximum concentration for that particular area. The UDAQ currently operates seven O₃ monitors in the Salt Lake City CBSA located at Hawthorne (HW), Herriman #3 (H3), Erda (ED, Copperview (CV), Rose Park (RP), Near Road (NR) and the Air Monitoring Center (AMC) stations. The NR station is a Special Purpose Monitor (SPM), which satisfies the near-road NO₂ EPA requirement. CV, RP and AMC sites have been established or modified to include O₃ measurements in the last two years.

The Pearson correlation coefficient (R), average relative concentration difference and distance between pairs of sites in Salt Lake City CBSA is presented in Table 24. The correlation analysis shows that the concentrations at all the sites are strongly correlated (R \geq 0.9) and their average relative differences are small, suggesting possible redundancy among the sites. However, the UDAQ recommends continuing monitoring at all the stations that currently measure O₃, which supply air quality data and support air pollution modeling efforts.

Site 1	Site 2	R	Ν	Absolute average relative difference	Distance (km)
Hawthorne	Herriman	0.92	955	0.0055	30
Hawthorne	Rose Park	0.95	303	0.0032	7
Hawthorne	Erda	0.91	897	0.0055	43
Copperview	Herriman	0.95	240	0.0054	16
Copperview	Erda	0.93	245	0.0068	39
Copperview	Rose Park	0.94	204	0.0036	21
Copperview	Hawthorne	0.94	234	0.0046	15
Rose Park	Erda	0.94	294	0.0043	41
Herriman	Erda	0.90	988	0.0044	29
Rose Park	Herriman	0.94	309	0.0044	33

Table 24. Pearson correlation coefficient (R), average relative concentration difference and distance between pairs of sites in Salt Lake City CBSA.

Provo-Orem CBSA

The UDAQ currently operates two O_3 monitors within the Provo-Orem CBSA in compliance with minimum federal monitoring requirements for a CBSA with a population between 350,000 and 4,000,000. The monitors are located at Lindon (LN) and Spanish Fork (SF) monitoring sites, which operate on a daily schedule. The LN station started to monitoring O_3 in 2018 after merging with North Provo station. The correlation analysis (see Table 25) showed that the concentrations at the two sites were strongly correlated (R = 0.95) and their relative difference was low. Both sites also displayed three-year design values that exceed the current NAAQS of 70 ppb. Given

these design values and minimum federal monitoring requirements, UDAQ is continuing measuring O_3 at these sites.

The UDAQ is required to relocate the SF site within the next two years due to planned construction work at its current location. To maintain consistency with the current site's objectives, a potential location is on the same street as the existing site, which would still allow the UDAQ to monitor both local and regional levels of O₃.

Table 25. Pearson correlation coefficient (R), average relative concentration difference and distance between pairs of sites in Provo-Orem CBSA.

Site 1	Site 2	R	N	Absolute average relative difference	Distance (km)
Lindon	Spanish Fork	0.95	301	0.004	23

Ogden-Clearfield CBSA

The UDAQ currently operates two O₃ monitors within the Ogden-Clearfield CBSA, which fulfills the minimum federal monitoring requirements for a CBSA with a population above 350,000 but less than 4,000,000. The monitors are located at the Bountiful Viewmont (BV) and Harrisville (HV) sites that operate continuously. The site at HV was established in response to an O₃ saturation study, which identified the site as a potentially high-ozone concentration area. The results of the correlation analysis showed that the concentrations, at each pair of sites, were strongly correlated (R \geq 0.92), with Ogden # 2 and HV being the mostly correlated stations (see Table 26). The monitor at BV is located in a well-urbanized, highly-populated area and is essential for O₃ measurement on neighborhood scales. Additionally, the O₃ data collected at BV provides valuable information that can be used in conjunction with CO, NOx, and VOC data, also monitored at this location. The O₃ monitor at HV is crucial for monitoring high levels of O₃ in the area and the UDAQ will continue measuring O₃ at these sampling sites within this CBSA. The UDAQ also recommends looking for a suitable place to add an additional station to this CBSA as a backup option.

Table 26. Pearson correlation coefficient (R),	average relative difference and distance between pairs of sites for O3
in Ogden-Clearfield CBSA.	

Site 1	Site 2	R	N	Absolute average relative difference	Distance (km)
Brigham City	Bountiful	0.92	1027	0.0046	66
Brigham City	Ogden #2	0.96	955	0.0037	32
Brigham City	Harrisville	0.94	992	0.0044	21
Bountiful	Ogden #2	0.96	1008	0.0032	34
Bountiful	Harrisville	0.94	1042	0.0039	45
Ogden #2	Harrisville	0.98	973	0.003	11

*Based on 8-hr average O₃ concentration data

Roosevelt site, Price and Vernal CBSAs

The UDAQ operates one O_3 monitor at each of these sites or CBSAs, which exceeds minimum federal monitoring requirements (see Table 23). These monitors were installed to investigate the atypical high wintertime O_3 levels in the Uinta Basin. The UDAQ, therefore, does not recommend making any changes to these ozone-monitoring sites.

Logan, St. George and Cedar City CBSAs

The UDAQ operates one O_3 monitor at each of these CBSAs to meet federal monitoring requirements (see Table 23). These monitors were installed to represent population exposure in their respective counties. The monitor at Cedar City was established for O_3 and $PM_{2.5}$ monitoring as a response to the predicted increase in population to 57,055 (see Table 23) in 2020, which is above the threshold of federal monitoring requirements. UDAQ does not recommend making any changes to the ozone-monitoring network within these CBSAs.

In addition, a Special Purpose Monitor (SPM) was established at Escalante, Garfield County, with the purpose of measuring O_3 near Escalante National Monument

An evaluation of O₃ monitors in UDAQ network is provided in Table 27.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Method/Schedule	2017- 2019 DV (ppm)	Value	Recommendation
Hawthorne	Salt Lake	SLAMS	High Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.076	High– NCore site; design location for O ₃ NAAQS; supports model performance evaluation and O ₃ maintenance	Continue monitoring
Herriman #3		SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.075	High– established to assess population exposure in southwest Salt Lake County	Continue monitoring
Copper View		SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.073*	High- identified as area for assessing population exposure in southeast Salt Lake County	Continue monitoring
Rose Park		SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.076 *	High-population exposure; monitoring gaseous species started in 2018 as a backup measurements for HW station	Continue monitoring
Erda	Tooele	SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.072	High – identified in assessment as high-ozone concentration area	Continue monitoring

Table 27. List of O₃ monitors in UDAQ network and recommendations for network modification.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Method/Schedule	2017- 2019 DV (ppm)	Value	Recommendation
Near Road	Salt Lake	SPM	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.064*	High – site established to monitor vehicular contribution to air pollution as part of the EPA NO ₂ monitoring program	Continue monitoring
Air Monitoring Center		SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	NA	New- established at 1 mile from Rose Park station. Instruments has been set up on the roof of the building with the objective of eventually be the replacement of the Rose Park station	Continue monitoring
Lindon	Utah	SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/Continuous	0.071*	High– design value location for O ₃ NAAQS; supports model performance evaluation/ O ₃ maintenance demonstration	Continue monitoring
Spanish Fork		SLAMS	Population Neighborhood	Population exposure	Instrumental Ultra Violet/ Continuous	0.070	High– design value location for O ₃ NAAQS; supports model performance evaluation/O ₃ maintenance demonstration; local high-ozone concentration area	Relocate site due to logistical issues and continue monitoring

Table 27 (cont.)

Site	County	Monitor	Spatial scale	Monitoring	Method/Schedule		Value	Recommendation
		Туре		objective				
Bountiful	Davis	SLAMS	High	Population	Instrumental Ultra	0.077	High- design value location for O ₃	Continue
Viewmont			Neighborhood	exposure	Violet/Seasonal		NAAQS; historically reported	monitoring
							highest O₃ concentrations in the	
							network; supports model	
							performance evaluation and	
							maintenance plan	
Harrisville	Weber	SLAMS	Population	Population	Instrumental Ultra	0.071	High-established in response to	Consolidated with
			Neighborhood	exposure	Violet/Seasonal		an O ₃ saturation study; high-ozone	HV; Continue
							concentration area, this site was	monitoring
							consolidated with Ogden #2	
Smithfield		SLAMS	Population	Population	Instrumental Ultra	0.065	Moderate- established to assess	Continue
			Neighborhood	exposure	Violet/Continuous		population exposure, provide a	monitoring
							baseline of levels in Logan area	

Table 27 (cont.)

Site	County	Monitor	Spatial scale	Monitoring	Method/Schedule	Value Recommend		
		Туре		objective				
Price#2	Carbon	SPM	Regional	Population	Instrumental Ultra	0.069	High – design value location for O_3	Continue
				exposure	Violet/Seasonal		NAAQS; potentially highest O ₃	monitoring
							concentrations area	
Roosevelt	Duchesne	SLAMS	Regional	Population	Instrumental Ultra	0.079	High- established to determine	Continue
				exposure	Violet/Seasonal		maximum O ₃ concentrations in	monitoring
							Duchesne county; design value	
							above NAAQS	
Vernal #4	Uintah	SLAMS	Regional	Population	Instrumental Ultra	0.067	High- established to replace Vernal	Continue
				exposure	Violet/Seasonal		site (VL), which was established in	monitoring
							response to an O ₃ study and	
							displayed a design value above O_3	
							NAAQS	
Hurricane	Washington	SLAMS	Regional	Population	Instrumental Ultra	0.067	Moderate–established to provide a	Continue
				exposure	Violet/Continuous		baseline of levels in the St. George	monitoring
							MISA; monitor is the only monitor	
							Washington County	
							washington county.	
Enoch	Iron	SLAMS	Population	Population	Instrumental Ultra	0.064	Moderate- established to assess	Continue
			Neighborhood	exposure	Violet/Continuous		population exposure provide a	monitoring
							baseline of levels in the Cedar City	
							MSA; monitor is the only monitor	
							that provides O_3 monitoring for from	
F acelant	Caufiala	CDM	Designal	Demolatio			County.	Continue
Escalante	Garfield	SPIM	Regional	Population	Instrumental Ultra	NA	High- This site is established to	Continue
				exposure	violety continuous		measure O ₃ near Escalante National	monitoring
							wonument	

*3-year design value unavailable as sites established in 2018 and 2019

Table 27 (cont.)

3.2.2 Sulfur Dioxide (SO₂) Network

3.2.2.1 Historical trends and deviations from NAAQS

The UDAQ currently operates four SO₂ monitors, located at Hawthorne (HW) (NCore site), Copperview (CV), Rose Park (RP) and the Air Monitoring Center (AMC) sites within the Salt Lake City CBSA. The monitor at HW was designated as population-oriented and satisfies NCore requirements.

For each site, the number of exceedances of the primary 1-hr 2010 SO₂ NAAQS is shown in Table 28, respectively. SO₂ monitoring at Bountiful Viewmont and Roosevelt was discontinued in 2012/2013 since the samplers did not record any exceedances of the 1-hr NAAQS. The 1-hr primary standard for SO₂ is 75 ppb. The Magna site was re-located from its previous location at 2935 South 8560 West, Magna, to its new location at 9228 West 2700 South, Magna, to better monitor the impact of emissions from Kennecott Utah Copper coal-fired power plant. The new Magna station resumed measurements on January 1, 2019, nonetheless only operated for 1 year because Kennecott Utah Copper shut down its coal-fired power plant in 2019.

The standard is met when the 99th percentile of the 1-hour daily maximum concentrations, averaged over 3 years, is less than 75 ppb. As illustrated in Figure 18 and Figure 19, no SO₂ NAAQS violations occurred in the state of Utah during the period 2007-2019. Moreover, all sites displayed a decreasing trend in SO₂ concentration, with levels reaching less than 10 ppb.

Number of Exceedances of PM _{2.5} 24-hr NAAQS (primary)								
Site	2017	2018	2019					
Hawthorne	0/0	0/0	0/0					
Rose Park	0/0	0/0						
Copperview	NA	0/0	0/0					

Table 28. Number of exceedances of primary 1-hr SO₂ NAAQS during 2017-2019.

Figure 18. 1-hr 99th percentile maximum value trends and comparison to NAAQS for SO₂ during the period 2009-2019

Figure 19. 1-hr average of 99th percentile value trends and comparison to NAAQS for SO₂ during the period 2017-2019

3.2.2.2 Site-by-site analysis

Federal regulations require a minimum of three SO₂ monitors within a CBSA with a calculated Population Weighted Emissions Index (PWEI) value equal to or greater than 1,000,000. The PWEI is calculated by multiplying the population of each CBSA by the total amount of SO₂ (in tons per year) emitted within the CBSA area, then dividing the resulting product by one million. The population is estimated using the most current census data or estimates while SO₂ emissions are calculated using an aggregate of the most recent county level emissions data available in the National Emissions Inventory. For any CBSA with a calculated PWEI value equal to or greater than 100,000, but less than 1,000,000, a minimum of two SO₂ monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 5,000, but less than 100,000, a minimum of one SO₂ monitor is required within that CBSA. PWEI for the Salt Lake CBSA is 3,329, suggesting that no monitor is needed within these, CBSAs (see Table 29). Given the consistent decrease in SO₂ concentration, non-violation of the NAAQS and the compliance of the NCore minimum monitoring requirements, the UDAQ will maintain SO₂ monitoring at Hawthorne (HW), Copperview (CV), Rose Park (RP) and the Air Monitoring Center (AMC) sites. An evaluation of SO₂ monitors in UDAQ network is provided in Table 30.

CBSA	Counties	Population estimate (2020)*	PWEI (Million persons- tons/year)	Minimum number of required monitors	Number of active monitors
Salt Lake City MSA	Tooele, UT Salt Lake, UT	1,255,736	3,329	1*	1 3**
Provo-Orem MSA	Juab, UT Utah, UT	682,314	140	0	0
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	681,907	433	0	0
Heber µSA	Wasatch, UT	32,741	1.1	0	0
Logan UT-ID MSA	Cache, UT Franklin, ID	139,228	8.9	0	0
Saint George MSA	Washington, UT	196,762	10.1	0	0
Cedar City μSA	Iron, UT	57,055	2.4	0	0
Price μSA	Carbon, UT	21,602	10.8	0	0
Vernal µSA	Uintah, UT	38,982	2.4	0	0
Summit Park µSA	Summit, UT	45,491	8.1	0	0

Table 29. Number of active SO_2 monitors in each CBSA and minimum number of required monitors.

*Ncore station. **measurements starting 2018 and 2019

Site	County	Monit	Spatial scale	Monitoring	Sampling and	Value	Recommendation
		or		objective	Analysis wiethod		
Hawthorne	Salt Lake	SLAMS	Population	Population	Continuous Pulsed	High-NCore site	Continue
			Neighborhood	exposure	fluorescence		monitoring
Copperview		SLAMS	Population Neighborhood	Population exposure	Continuous Pulsed fluorescence	High– Identified as area for assessing population exposure in southeast Salt Lake County; support modeling	Continue monitoring
Rose Park		SLAMS	Population Neighborhood	Population exposure	Continuous Pulsed fluorescence	High – Identified as area for assessing population exposure; monitoring gaseous species started in 2018; site selected as backup for Hawthorne station	Continue monitoring
Air Monitoring Center		SLAMS	Population Neighborhood	Population exposure	Continuous Pulsed fluorescence	New- re-located just 1 mile from Rose Park station. Instruments has been set up on the roof; selected as a potential replacement of the Rose Park station	Continue monitoring

Table 30. List of SO₂ monitors in Utah air monitoring network and recommendations for network modification.

3.2.3 Nitrogen Dioxide (NO₂) Network

3.2.3.1 Historical trends and deviations from NAAQS

National standards for NO₂ include hourly and annual standards of 100 and 53 ppb, respectively. The hourly standard is met when the 98^{th} percentile of 1-hour daily maximum concentrations, averaged over 3 years, is less than 100 ppb. The annual standard is met when the annual mean is less than 53 ppb. Utah has been in compliance with these standards (see Figure 20 and Figure 21), with the exception of only one 1-hr value above the hourly NAAQS during 2017-2019 (see Table 31).

	Number of exceedances of primary 1-hr 2010 SO2 NAAQS					
	2017	2018	2019			
Bountiful Viewmont	0	1	0			
Smithfield	0	0	0			
Price	0	0	0			
Roosevelt	0	0	0			
Hawthorne	0	0	0			
Vernal	0	0	0			
Copperview	NA	0	0			
Hurricane	0	0	0			
Ogden #2	0	0	0			
Harrisville	0	0	0			
Enouch	0	0	0			
Lindon	0	0	0			
Spanish Fork	0	0	0			
Erda	0	0	0			
Near Road	NA	0	0			
Rose Park	NA	0	0			
Herriman	0	0	0			
Magna	0	0	0			
Air Monitoring Center	NA	NA	0			

Table 31. Number of exceedances of primary 1-hr NO₂ NAAQS during 2017-2019

Figure 20. 1-hr design value trends and comparison to NAAQS for NO₂ during the period 2007-2019.

Figure 21. Annual design value trends and comparison to NAAQS for NO₂ during the period 2000-2019.

3.2.3.2 Site-by-Site Analysis and Near-Road NO₂ Monitoring

The UDAQ currently operates NO₂ monitors in seventeen out of twenty-one monitoring stations that are presently operational. Although Utah has demonstrated compliance with NO₂ standards, the UDAQ would like to maintain NO₂ monitoring at all sites since emissions of this pollutant can lead to increased O₃ levels and PM_{2.5} formation, often resulting in pollution levels exceeding the NAAQS. Photochemical reactions between NO₂ and volatile organic compounds lead to the formation of ground-level O₃ along the Wasatch Front and the Uinta Basin during summer and winter, respectively^{6,7}. NO₂ can also react with ammonia to form nitrate-PM_{2.5} during winter. Therefore, to support efforts towards understanding and controlling high PM_{2.5} and O₃ levels, particularly during winter, the UDAQ would like to maintain NO₂ monitoring at all current sites. A Near Road station was established in January 2019 on I-15 at the address 5001 Galleria Dr, Murray, to satisfy federal monitoring requirements. Federal regulations require a minimum of one monitor to be placed in any urban area with a population greater than or equal to one million people in order to assess community-wide concentrations. Regulations also require at least one monitor to be located near a major road in urban areas with a population greater than or equal to 500,000 people and monitors to be placed in other areas where maximum concentrations are expected. All sites satisfy minimum federal NO₂ monitoring requirements, with a few stations exceeding the requirements. The minimum number of required NO₂ monitors and a count of active NO₂ monitors in the UDAQ network are provided in Table 32. The Salt Lake City CBSA has six NO₂ monitors located at Hawthorne (HW), Herriman (H3), Erda (ED), Copperview (CV), Rose Park (RP) and the Air Monitoring Center (AMC) stations. The monitors satisfy federal requirements for community-based (area-wide) NO₂ monitoring and the near-road monitoring at this CBSA; however, an additional near-road monitor is required within the Salt Lake CBSA. The UDAQ will work on establishing near-road sites in Utah and Davis counties but it will not be until funding becomes available. Other monitoring objectives currently have a higher priority due to the scarcity of resources. An evaluation of NO₂ monitors in UDAQ network is provided in Table 33.

⁶ UDAQ, <u>2012 Utah Ozone Study</u>

⁷ UDAQ, <u>2014 Uinta Basin Winter Ozone Study Final Report</u>

CBSA	Counties	Census 2010	Population estimate (2030)	Minimum number of required near-road monitors	Minimum number of required area-wide monitors	Number of active monitors
Salt Lake City MSA	Tooele, UT Salt Lake, UT	1,087,873	1,440,329	1	1	3 plus 3*(area-wide) 1 (near-road)
Provo-Orem MSA	Juab Utah	526,810	850,304	1	0	2 (area-wide)
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	597,159	766,860	1	0	2 (area-wide)
Heber µSA	Wasatch, UT	32,741	44,549	0	0	0
Logan UT-ID MSA	Cache, UT Franklin, ID	Total: 125,442 Cache County, UT: 112, 656	Cache County: 168,136	0	0	1
Saint George UT MSA	Washington, UT	138, 115	280,558	0	0	1
Cedar City μSA	Iron, UT	46,163	71,687	0	0	1
Price µSA	Carbon, UT	21, 403	22,092	0	0	1
Vernal UT μSA	Uintah, UT	32, 588	41,099	0	0	1
Summit Park	Summit, UT	36, 324	56,890	0	0	0

Table 32. Number of active NO₂ monitors in each CBSA and minimum number of required monitors.

*measurements starting 2018 and 2019

Site	County	Monitor	Spatial scale	Monitoring	Pollutant/Method	Value	Recommendation
		Туре		objective			
Hawthorne	Salt Lake	SLAMS	High Neighborhood	Population exposure	Nitrogen dioxide/Instrumental Chemiluminescence	High – NCore site; supports model performance evaluation and NAAQS maintenance demonstration; high- exposure area	Continue monitoring
Herriman #3		SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High- established to assess population exposure in southwest Salt Lake County	Continue monitoring
CopperView		SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High– Identified as area for assessing population exposure in southeast Salt Lake County	Continue monitoring
Rose Park		SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	Moderate- started monitoring gaseous species in 2018; site selected as a backup measurement for HW station	Continue monitoring
Erda	Tooele	SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	Moderate -identified in assessment as high O ₃ exposure area	Continue monitoring

Table 33. List of NO₂ monitors in Utah air monitoring network and recommendations for network modification.

Table 34 (cont.)

Site	County	Monitor Type	Spatial scale	Monitoring objective	Method/Schedule	Value	Recommendation
Near Road	Salt Lake	SPM	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High – site recently established to assess population exposure to and to monitor vehicular contribution to air pollution as part of the EPA NO2 monitoring program	Continue monitoring
Air Monitoring Center		SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	New- re-located just 1 mile from Rose Park station. Instruments has been set up on the roof; selected as a potential replacement of the Rose Park station	Continue monitoring
Lindon	Utah	SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High– supports model performance evaluation and NAAQS maintenance demonstration; high-exposure	Continue monitoring
Spanish Fork		SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	Moderate – supports model performance evaluation/O ₃ maintenance demonstration; local high-ozone concentration area	Relocate site due to logistical issues and continue monitoring

Table 34 (cont.)

Site	County	Monitor	Spatial scale	Monitoring	Method/Schedule	Value	Recommendation
		Туре		objective			
Bountiful	Davis	SLAMS	High	Population	Nitrogen	High – supports model	Continue
Viewmont			Neighborhood	exposure	oxides/Instrumental	performance evaluation	monitoring
					Chemiluminescence		
Harrisville	Weber	SLAMS	Population	Population	Nitrogen	High- established in response to	Continue
			Neighborhood	exposure	oxides/Instrumental	an O₃ saturation study; high-ozone	monitoring
					Chemiluminescence	concentration area, this site was	
						combined with Ogden #2	
Hurricane	Washington	SLAMS	Regional	High winter	Nitrogen	Moderate – supports model	Continue
				O₃ study	oxides/Instrumental	performance evaluation and	monitoring
					Chemiluminescence	control of high winter-time O₃	
						levels	
Smithfield	Cache	SLAMS	Population	Population	Nitrogen	Moderate- established to assess	Continue
			Neighborhood	exposure	oxides/Instrumental	population exposure, provide a	monitoring
					Chemiluminescence	baseline of levels in Logan area	

Table 34 (cont.)

Site	County	Monitor	Spatial scale	Monitoring	Method/Schedule	Value	Recommendation
		Туре		objective			
Price#2	Carbon	SPM	Regional	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High- supports model performance evaluation and control of high winter- time O ₃ levels	Continue monitoring
Roosevelt	Duchesne	SLAMS	Regional	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High- supports model performance evaluation and control of high winter- time O ₃ levels	Continue monitoring
Vernal #4	Uintah	SLAMS	Regional	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	High – established in response to an O ₃ study and displayed a design value above O ₃ NAAQS	Continue monitoring
Hurricane	Washington	SLAMS	Regional	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	Moderate –established to provide a baseline of levels in the St. George MSA; it is the only monitor that provides O ₃ monitoring for Washington County	Continue monitoring
Enoch	Iron	SLAMS	Population Neighborhood	Population exposure	Nitrogen oxides/Instrumental Chemiluminescence	Moderate- established to assess population exposure	Continue monitoring
3.2.4 Carbon Monoxide (CO) Network 3.2.4.1 Historical Trends and Deviations from NAAQS

The national 1-hr and 8-hr standards for CO are 35 and 9 ppm, respectively. The standards are not to be exceeded more than once per year. Three cities in Utah, Salt Lake City, Ogden and Provo, were at one time designated as non-attainment areas for CO. However, given recent improvements in motor vehicle technology, Salt Lake City, Ogden and Provo have been successfully redesignated as attainment areas in 1999, 2001 and 2006, respectively. All areas in Utah are currently in compliance with CO NAAQS, as shown in Table 34, Figure 22 and Figure 23. Note that CO monitoring at Washington Boulevard and Cottonwood stations was discontinued in 2013 and 2012, respectively. Cottonwood station was closed due to violations of EPA siting criteria and data redundancy with Hawthorne site. Washington Boulevard was shut down because CO was the only measured parameter at this site and the collected data was redundant with that monitored at Ogden site, located about 1 mile south. North Provo station was permanently discontinued in 2018 and CO measurements at this site was no longer required as part of the CO maintenance plan.

	Number of exceedances of 1-hr/8-hr 1971 CO NAAQS							
	2017	2018	2019					
Hawthorne	0	0	0					
Copperview	0	0	0					
Rose Park	0	0	0					
Near Road	0	0	0					
Lindon	0	0	0					
North Provo*	0	0	NA					
Harrisville	0	0	0					

*The station was discontinued As of Q1 of 2018 all of the instruments at the station were taken offline. Complete station removal will be finished by the end of Q2 of 2018.

Figure 22. Second-highest 1-hr concentration trends and comparison to NAAQS for CO during the period 2000-2019. **Note**: Washington Blvd # 2 site was located right on the sidewalk next to a BBQ joint that would roll out the grills on the sidewalk to grill within a few feet of our monitor inlet, it may be affecting the CO concentration levels at the site.

Figure 23. Second-highest 8-hr concentration trends and comparison to NAAQS for CO during the period 2000-2019.

3.2.4.2 Site-by-Site Analysis

The UDAQ currently operates seven CO monitors within its network. These are located at Hawthorne (HW), Rose Park (RP), Harrisville (HV), Copperview (CV), Lindon (LN), Air Monitoring Center (AMC) and the Near Road (NR). The minimum federal monitoring requirements for CO and an evaluation of CO monitors in UDAQ network are provided in Table 35 and Table 36, respectively.

Salt Lake City CBSA

According to federal regulations, one CO monitor is required to operate co-located with one required near-road NO₂ monitor in CBSAs having a population of 1,000,000 or more. If a CBSA has more than one required near-road NO₂ monitor, only one CO monitor is required to be co-located with a near-road NO₂ monitor within the CBSA. The UDAQ currently operates a co-located CO at the Near Road station.

Provo-Orem and Ogden-Clearfield CBSAs

The UDAQ currently operates one CO monitor in each of the Provo-Orem and Ogden-Clearfield CBSAs, which exceeds minimum federal monitoring requirements. The samplers located at Lindon and Harrisville are used to monitor population exposure to emissions from anthropogenic activities in the area as well as to support CO maintenance plans. The UDAQ would therefore like to maintain CO monitoring at these sites.

Table 35. Number of active CO monitors in each CBSA and minimum number of requ	uired monitors.
--	-----------------

CBSA	Counties	Census 2010	Population estimate (2030)	Minimum number of required near-road NO ₂ monitors	Minimum number of required CO monitors	Number of active CO monitors
Salt Lake City MSA	Tooele, UT Salt Lake, UT	1,087,873	1,440,329	1	1* (co-located with near-road NO ₂ monitor)	1 (area-wide) 3* (area- wide)
Provo-Orem MSA	Juab, UT Utah, UT	526,810	850,304	1	0	1 (area-wide)
Ogden- Clearfield MSA	Box Elder, UT Davis, UT Morgan, UT Weber, UT	597,159	766,860	1	0	1 (area-wide)
Heber µSA	Wasatch, UT	23, 530	44,549	0	0	0
Logan UT-ID MSA	Cache, UT Franklin, ID	112, 656	168,136	0	0	0
Saint George MSA	Washington, UT	138, 115	280,558	0	0	0
Cedar City µSA	Iron, UT	46,163	71,687	0	0	0
Price µSA	Carbon, UT	21, 403	22,092	0	0	0
Vernal µSA	Uintah, UT	32, 588	41,099	0	0	0
Summit Park µSA	Summit, UT	36, 324	56,890	0	0	0

*sites established in 2018 and 2019.

Site	County	Monitor	Spatial scale	Monitoring	Sampling and	Value	Recommendation
		, Abc		objective			
Hawthorne	Salt Lake	SLAMS	High Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	High– NCore site; high-exposure area; design value location for CO NAAQS; supports CO maintenance plan and model performance evaluation	Continue monitoring
Rose Park		SLAMS	Population Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	moderate- started monitoring gaseous species in 2018 as a backup measurement for HW station	Continue monitoring
Air Monitoring Center		SLAMS	Population Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	New- re-located just 1 mile from Rose Park station. Instruments has been set up on the roof with the objective to replace Rose Park station	Continue monitoring
Near Road		SPM	Population Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	High –established to assess population exposure to and to monitor vehicular contribution to air pollution as part of the EPA NO ₂ (CO co-located) monitoring program	Continue monitoring
Harrisville	Weber	SLAMS	Population Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	High- started in 2019 to monitoring CO as Ogden #2 station was shut down; supports CO maintenance plan and model performance evaluation;	Continue monitoring
LN	Utah	SLAMS	Population Neighborhood	Population exposure	Instrumental Gas Phase Correlation/ Continuous	High- supports CO maintenance plan/model performance evaluation; design value location for CO NAAQS	Continue monitoring

Table 36. List of CO monitors in Utah air monitoring network and recommendations for network modification.

3.3 Lead (Pb) Network

3.3.1 Historical trends and deviations from NAAQS

Historically, major sources of lead emissions came from combustion of leaded fuel as on-road motor vehicle fuel emissions. However, given that leaded gasoline for automobiles was completely eliminated by the end of 1995 in the U.S., the only sources of lead in Utah include extraction and processing of metallic ores as well as piston-engine aircrafts.

On November 12 2008, EPA revised the primary and secondary NAAQS for lead to 0.15 μ g/m³ in total suspended particles (TSP). The previous standards, which were issued by EPA in 1978, were ten times higher (1.5 μ g/m³). To meet the standard, a rolling three-month average lead concentration may not exceed 0.15 μ g/m³. The state of Utah has been in compliance with the lead NAAQS since 1982, with EPA authorizing the discontinuation of lead monitoring in Utah in 2005. However, given that EPA established new requirements for lead monitoring in 2008 and 2010, UDAQ resumed lead monitoring at Magna, a point source site near the Kennecott copper smelter, from 2010 through June 2017 (data shown in Figure 24). EPA approved the discontinued monitoring in 2017 due to extremely low concentrations.

UDAQ and EPA will continue observing the requirements, such as source emission thresholds, population, and NAAQS revisions that may trigger the need to resume monitoring lead in Utah.

Figure 24. Trends in maximum three-month average 24-hr Pb concentration during the period 2010-2017 and comparison to NAAQS.

3.4 Chemical Speciation Network (CSN)

UDAQ currently operates four PM_{2.5} chemical speciation sites, including Hawthorne (HW), Bountiful Viewmont (BV), Lindon (LN) and Smithfield (SM). HW site in Salt Lake County is an EPA-designated CSN monitoring station, operating on a 1-in-3-day sampling schedule. BV in Davis County, LN in Utah County and SM in Cache County are SLAMS PM_{2.5} speciation sites, operating on a 1-in-6-day sampling schedule. Data from the speciation network are primarily used to determine $PM_{2.5}$ chemical composition and sources as well as the spatial and temporal variation in its components. A list of measured parameters and analyses methods at this site is provided in Table 37.

3.5 NCore Network

UDAQ currently operates one NCore site, Hawthorne, located in Salt Lake County. The site is equipped with several advanced measurement systems to monitor PM (PM_{2.5} and PM₁₀), O₃, NO₂, trace levels of CO, SO₂, total reactive nitrogen (NO_y), Carbonyl Compounds, organic and elemental carbon as well as meteorological parameters (ambient temperature, ambient pressure, solar radiation, wind speed, wind direction and relative humidity). On January 1, 2019 a gas chromatograph was installed at this site to monitor volatile organic compounds (VOCs) from methane (C1) to n-Dodecane (C-12). This site satisfies federal requirements for the Photochemical Assessment Monitoring Station (PAMS) network program. A list of measured parameters and analyses methods at this site is provided in Table 38.

3.6 Air Toxics Trends Network

UDAQ has been participating in the EPA-funded Urban Air Toxics Monitoring Program since 1999. In January 2003, the air toxics monitoring equipment was re-located from West Valley to Bountiful Viewmont (BV) in order to co-locate the air toxics monitors with $PM_{2.5}$ speciation samplers, which would provide a more complete characterization of monitored air pollutants. In addition, aldehydes and PM_{10} -metals is also provided at this site. A list of measured parameters and analyses methods at this site is shown in Table 39.

A Map showing the sites that take part of the EPA special programs is presented in Figure 25.

3.7 Mercury Deposition Network

Mercury is of significant health and environmental concern in Utah. Advisories limiting the consumption of fish have been issued for certain lakes and watersheds due to their elevated mercury levels. UDAQ was part of the National Mercury Deposition Network, measuring mercury dry deposition from 2009 to summer 2017 and measurements were discontinued after consultation with the EPA.

Figure 25. Monitoring stations designed for chemical Speciation, NCore, Air Toxic Trends and IMPROVE.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Pollutant/Method	Value	Recommendation
Bountiful Viewmont	Davis	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} speciation/ Manual EPA CSN	High –The average last three years design value was below PM _{2.5} NAAQS; supports model performance, evaluation and SIP development	Continue monitoring
Hawthorne	Salt Lake	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} speciation/ Manual EPA CSN	High – The average last three years design value was below PM _{2.5} NAAQS; NCore site; supports model performance, evaluation and SIP development	Continue monitoring
Lindon	Utah	SLAMS	Population Neighborhood	Population exposure	PM _{2.5} speciation/ Manual EPA CSN	High – the average last three years design value was below PM _{2.5} NAAQS; supports model performance evaluation/SIP development	Continue monitoring
Smithfield	Cache	SLAMS	Population Neighborhood	Population exposure	PM2.5 speciation/ Manual EPA CSN	Moderate – The average last three years design value was below PM _{2.5} NAAQS; supports model performance, evaluation/SIP development	Continue monitoring

Table 37. List of chemical speciation sites in Utah air monitoring network and recommendations for network modification.

Site	County	Monitor	Spatial scale	Monitoring	Pollutant/Method	Value	Recommendation										
		Туре		objective													
Hawthorne	Salt	SLAMS	Population	Population	PM _{2.5} speciation/ Manual EPA	High-supports air quality model	Continue										
	Lake		Neighborhood	exposure	CSN	evaluation, SIP development and	monitoring										
					PM _{2.5} FRM/Manual gravimetric	NAAQS maintenance plans; design value location for NAAQS;											
					PM ₁₀ FRM/Manual gravimetric	design value above PM _{2.5} NAAQS;											
					PM _{10-2.5} /Manual gravimetric	supports AQI											
					subtraction	reporting/forecasting											
			High		NO ₂ /Instrumental												
			Neighborhood		Chemiluminescence												
			Population		NOy/ Instrumental												
			Neighborhood Chemiluminescence									Neighborhood		Chemiluminescence			
					SO ₂ /Pulsed fluorescence												
													High		O ₃ /Instrumental Ultra Violet		
			Neighborhood		- 5,												
			-		CO/Instrumental Gas Phase												
					Correlation												
			Population		OC, EC/NIDR												
			inely income of	Air Quality Index	PM ₁₀ continuous /TEOM FDMS												
				index	PM _{2.5} continuous /TEOM FDMS												
				03	PAMS C2 to C12/ Instrumental												
				modeling	gas chromatography												
		input															
			Urban	-	Surface meteorology												

Table 38. List of NCore network sites and recommendations for network modification.

Site	County	Monitor Type	Spatial scale	Monitoring objective	Pollutant/Method	Value	Recommendation
Bountiful Viewmont	Davis	SLAMS	Population Neighborhood	Population exposure	VOCs/ Manual EPA NTTN Semi-volatiles/ Manual EPA NTTN Carbonyl Compounds/Manual EPA NTTN PM10 metals/ Manual Gravimetric PM10 metals co- located/ Manual Gravimetric Hexavalent Chromium/ Manual EPA NTTN	High– NATTS site; toxics data co-located with PM2.5 speciation data and gaseous monitors; monitors emissions from nearby oil refineries	Continue monitoring

Table 39. List of National Air Toxics Trends Stations (NATTS) and recommendations for network modification.

3.8 Meteorological Monitoring Network

Meteorological parameters, including ambient temperature, temperature differential, relative humidity, ambient pressure, solar radiation as well as wind speed and direction, are currently measured at multiple sites throughout the state of Utah in order to represent properly the complex wind patterns and micrometeorology in Utah's airshed and to support air quality models and trends in co-located air pollutants. The UDAQ does not recommend making any changes to the meteorological monitoring network; however, beginning this year the UDAQ will start updating the technology used to measure the meteorological variables. Presently, the system used to measure the wind direction and speed consist of cup anemometers and vane systems (in all the stations but Roosevelt), but, it will be replaced by sonic anemometer systems (2D sonic sensors, RM Young Ultrasonic 86004). The modifications will yield in a lower maintenance of the meteorological systems and a lower detection threshold, which will allow the UDAQ to capture and better understand the small eddies and transports during our cold pool seasons, where the typical analog sensor will read no wind flow. The new system will be smaller and more cost effective than the current set up, which is favorable for the limited space in the monitoring shelters.

A second crucial update is to get a combination of temperature and relative humidity sensors (Campbell Scientific HMP60) at every site, currently few sites are monitoring relative humidity, which will be beneficial for air quality modeling application. In addition, pyranometers (Campbell Scientific CS301) to measure incoming solar radiation will also be installed.

Table 40 lists measured meteorological parameters, including a) relative humidity, b) ambient temperature and temperature difference, c) barometric pressure, d) wind speed, e) wind direction, f) standard deviation in wind direction (WD sigma) and g) solar radiation, in Utah's air monitoring network.

Table 40. List of measured meteorological parameters, including a) relative humidity, b) ambient temperature and temperature difference, c) barometric pressure, d) wind speed, e) wind direction, f) standard deviation in wind direction (WD sigma) and g) solar radiation, in Utah air monitoring network and recommendations for network modification.

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Roosevelt	Duchesne	Urban	Relative humidity/Elec. Thin film	Continuous	10	High – MET data co-located with O ₃ measurements	Continue monitoring
Air Monitoring Center	Salt Lake	Urban	Relative humidity/Elec. Thin film	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Saltair		Urban	Relative humidity/Elec. Thin film	Continuous	10	Moderate – supports air quality modeling	Continue monitoring
Erda		Urban	Relative humidity/Elec. Thin film	Continuous	3	High– MET data co-located with air pollutants	Continue monitoring
Herriman		Urban	Relative humidity/Elec. Thin film	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Hawthorne		Urban	Relative humidity/Elec. Thin	Continuous	10	High– NCore site; MET data co- located with air pollutants	Continue monitoring
Antelope Island	Davis	Urban	Relative humidity/Elec. Thin film	Continuous	6	High– supports modeling of lake emissions	Continue monitoring
Bountiful Viewmont		Urban	Relative humidity/Elec. Thin film	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring

a) Relative humidity

Badger Island	Tooele	Urban	Relative humidity/Elec. Thin film	Continuous	10	High – supports modeling of lake emissions	Continue monitoring
Lindon	Utah	Urban	Relative humidity/Elec. Thin film	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Price #2	Carbon	Regional	Elec. Thin Film	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Hurricane	Washington	Regional	Elec. Thin Film	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring

b) Ambient temperature and temperature difference

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Price #2	Carbon	Regional	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Antelope Island	Davis	Urban	Ambient temperature/Elec. resistance	Continuous	6	High – supports modeling of lake emissions	Continue monitoring
Bountiful Viewmont		Urban	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring

Roosevelt	Duchesne	Urban	Ambient Temperature/Elec. resistance Temperature difference/Math Channel	Continuous	10 2 10-2	High– MET data co-located with O₃ measurements	Continue monitoring
Air Monitoring Center	Salt Lake	Urban	Ambient temperature/Elec. resistance	Continuous	10	High – MET data co-located with mercury deposition measurements	Continue monitoring
Saltair		Urban	Ambient temperature/Elec. resistance	Continuous	10	Moderate – supports air quality modeling	Continue monitoring
Hawthorne		Urban	Ambient temperature/Elec. resistance	Continuous	10	High- NCore site; MET data co- located with air pollutants	Continue monitoring
Erda		Urban	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Rose Park		Urban	Ambient temperature/Elec. resistance	Continuous	10	High – MET data co-located with mercury deposition measurements	Continue monitoring
Copperview		Urban	Ambient temperature/Elec. resistance	Continuous	10	High- MET data co- located with air pollutants	Continue monitoring
Badger Island	Tooele	Urban	Ambient temperature/Elec. resistance	Continuous	10	High– supports modeling of lake emissions	Continue monitoring
Vernal #4	Uintah	Regional	Ambient temperature/Elec. resistance	Continuous	10	High–MET data co-located with air pollutants	Continue monitoring

Lindon	Utah	Urban	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Spanish		Urban	Ambient	Continuous	10	High- MET data co-located with air	Relocate site due to
Fork			temperature/Elec. resistance			pollutants	logistical issues
Hurricane	Washington	Regional	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Harrisville	Weber	Urban	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Enoch	Iron	Urban	Ambient temperature/Elec. resistance	Continuous	10	High- MET data co-located with air pollutants	Continue monitoring
Smithfield	Cache	Urban	Ambient temperature/Elec. resistance	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring

c) Barometric pressure

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Bountiful	Davis	Urban	Barometric	Continuous	1	High- MET data co-located	Continue
Viewmont			pressure/Pressure			with air pollutants	monitoring
			transducer				
Hawthorne		Urban	Barometric	Continuous	3	High- NCore site; MET data	Continue
			pressure/Pressure			co-located with air pollutants	monitoring
			transducer				
Herriman		Urban	Barometric	Continuous	10	High- MET data co-located	Continue
			pressure/Pressure			with air pollutants	monitoring
			transducer			measurements	

d) Wind speed

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Price #2	Carbon	Regional	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Antelope Island	Davis	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	6	High– supports modeling of lake emissions	Continue monitoring
Bountiful Viewmont		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Roosevelt	Duchesne	Urban	Wind speed/Sonic method	Continuous	10	High– MET data co-located with O₃ measurements	Continue monitoring

Enoch	Iron	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Air Monitoring Center	Salt Lake	Urban	Wind speed/Sonic 2D	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Saltair		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	Moderate – supports air quality modeling	Continue monitoring
Erda		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Copperview		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Herriman		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Rose Park		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Hawthorne	-	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High- NCore site; MET data co-located with air pollutants	Continue monitoring
Badger Island	Tooele	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– supports modeling of lake emissions	Continue monitoring
Vernal #4	Uintah	Regional	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Lindon	Utah	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	Low – MET data co-located with air pollutants but site redundant with North Provo	Consolidate with North Provo at a new location

Spanish Fork		Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High – MET data co-located with air pollutants	Relocate site due to logistical issues
Hurricane	Washington	Regional	Wind speed/Elec. Chopped signal Level 1	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Harrisville	Weber	Urban	Wind speed/Elec. Chopped signal Level 1	Continuous	10	Moderate – MET data co- located with air pollutants	Continue monitoring

e) Wind direction

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Price #2	Carbon	Regional	Wind direction/Elec.	Continuous	10	High- MET data co-located	Continue
			Resistance Level 1			with air pollutants	monitoring
Antelope	Davis	Urban	Wind direction/Elec.	Continuous	6	High– supports modeling of	Continue
Island			Resistance Level 1			lake emissions	monitoring
Bountiful		Urban	Wind direction/Elec.	Continuous	10	High- MET data co-located	Continue
Viewmont			Resistance Level 1			with air pollutants	monitoring
Roosevelt	Duchesne	Urban	Wind direction/Sonic	Continuous	10	High– MET data co-located	Continue
			method			with O ₃ measurements	monitoring
Enoch	Iron	Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring

Air Monitoring Center	Salt Lake	Urban	Wind direction/Sonic 2D	Continuous	4	High– MET data co-located with air pollutants	Continue monitoring
Saltair		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	Moderate – supports air quality modeling	Continue monitoring
Erda		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Copperview		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Herriman		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Rose Park		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Hawthorne		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High – NCore site; MET data co-located with air pollutants	Continue monitoring
Badger Island	Tooele	Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High– supports modeling of lake emissions	Continue monitoring
Vernal #4	Uintah	Regional	Wind direction /Elec. Chopped signal Level 1	Continuous	10	High– MET data co-located with air pollutants	Continue monitoring
Lindon	Utah	Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	Low – MET data co-located with air pollutants but site redundant with North Provo	Consolidate with North Provo at a new location

Spanish Fork		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	High- MET data co-located with air pollutants	Relocate site due to logistical issues
Hurricane	Washington	Regional	Wind direction/Elec. Resistance Level 1	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Harrisville		Urban	Wind direction/Elec. Resistance Level 1	Continuous	10	Moderate– MET data co- located with O₃ measurements	Continue monitoring

f) WD sigma

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Price #2	Carbon	Regional	WD Sigma/Elec. EPA method	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Antelope Island	Davis	Urban	WD Sigma/Elec. EPA method	Continuous	6	High– supports modeling of lake emissions	Continue monitoring
Bountiful Viewmont		Urban	WD Sigma/Elec. EPA method	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Roosevelt	Duchesne	Urban	WD Sigma/Elec. EPA method	Continuous	10	High– MET data co-located with O₃ measurements	Continue monitoring
Air Monitoring Center	Salt Lake	Urban	WD Sigma/Elec. EPA method	Continuous	4	High– MET data co-located	Continue monitoring
Saltair		Urban	WD Sigma/Elec. EPA method	Continuous	10	Moderate – supports air quality modeling	Continue monitoring
Hawthorne		Urban	WD Sigma/Elec. EPA method	Continuous	10	High – NCore site; MET data co-located with air pollutants	Continue monitoring

Badger Island	Tooele	Urban	WD Sigma/Elec. EPA method	Continuous	10	High– supports modeling of lake emissions	Continue monitoring
Vernal #4	Uintah	New Regional	WD Sigma/Elec. EPA method	Continuous	10	New-established to replace Vernal site (VL), which was shut down due to property development; MET data co- located with air pollutants	Continue monitoring
Lindon	Utah	Urban	WD Sigma/Elec. EPA method	Continuous	10	Low – MET data co-located with air pollutants but site redundant with North Provo	Consolidate with North Provo at a new location
Spanish Fork		Urban	WD Sigma/Elec. EPA method	Continuous	10	High – MET data co-located with air pollutants	Relocate site due to logistical issues
Hurricane	Washington	Regional	WD Sigma/Elec. EPA method	Continuous	10	High – MET data co-located with air pollutants	Continue monitoring
Harrisville		Urban	WD Sigma/Elec. EPA method	Continuous	10	Moderate– MET data co- located with O ₃ measurements	Continue monitoring

g) Solar radiation

Site	County	Spatial scale	Pollutant/Method	Operating schedule	Tower height (m)	Value	Recommendation
Saltair	Salt Lake	Urban	Solar radiation/Elec. Licor	Continuous	2	Moderate – supports understanding of atmospheric photochemistry	Continue monitoring
Hawthorne		Urban	Solar radiation/Elec. EPPLY	Continuous	4	High– NCore site; data co- located with air pollutants; supports understanding of atmospheric photochemistry	Continue monitoring
Lindon	Utah	Urban	Solar radiation/Elec. EPPLY	Continuous	4	High-data co-located with air pollutants; supports understanding of atmospheric photochemistry	Continue monitoring
Smithfield	Cache	Urban	Solar radiation/Elec. EPPLY	Continuous	4	High–data co-located with air pollutants; supports understanding of atmospheric photochemistry	Continue monitoring
Badger Island	Tooele	Urban	Solar radiation/Elec. Licor	Continuous	2	High – supports modeling of lake emissions	Continue monitoring

4. Summary of Proposed Network Modifications

During the last five years, the UDAQ Monitoring Network system underwent the following changes:

- Wet and dry mercury sampling performed at the Air Monitoring Center (previous location) was dismissed in 2017 after approval by EPA.
- The North Provo station was consolidated with the Lindon station and was permanently discontinued at the end of 2017.
- Lead (pb) measurements were discontinued in 2017 after approval by EPA.
- The Rose park station was provided with gaseous monitors in 2018 with the objective to have backup measurements for the Salt Lake City Hawthorne station.
- The Enoch site located at Iron County was established due to the expected population growth that will exceed the threshold of federal monitoring requirements by 2020. The station started collecting data on January 2018.
- The Copperview monitoring station was installed in the southeast area of Salt Lake County, to support air pollution modeling efforts and supply air quality data to the increasing population in the southern area of Salt Lake Valley. The station is collecting data since April 2018.
- A Near-Road station was established in Salt Lake City CBSA, which includes NO₂ and CO measurements which are required by the EPA NO₂ program and started collecting data on January 1, 2019.
- The Brigham City station was removed on June 2019 because the school at which the station was housed needed the land to develop a carpool lane.
- The Ogden #2 station was removed because the location where the station was operating was used by the city for development area. The particulate monitoring instruments ($PM_{2.5}$ and PM_{10}) were re-located at Harrisville station, which is within the same CBSA area.
- A gas chromatograph and other PAMS instruments including carbonyl samplers and a Ceilometer were installed at the Hawthorne site to monitor O₃ precursors for O₃ production including volatile organic compounds (VOCs) from methane (C1) to n-Dodecane (C-12). This instrument has been collecting data but it is still being fine-tuned for optimal performance. The Hawthorne site is also the primary PAMS site for the Salt Lake City MSA.
- The newly constructed Technical Support Center was opened on May 21, 2019, and houses the Air Monitoring Center (AMC). A variety of instruments, including co-located equipment and instruments with new technology, have been set up on the roof of the building with the purpose of being the upcoming replacement to the Rose Park station.
- Several stations in the network have been adapted to measure additional pollutants to improve the efficacy of the network.

The UDAQ monitoring network meets all federal requirements and satisfactorily supports UDAQ monitoring objectives. However, while comprehensive changes are not necessary at this time, some targeted modifications could be implemented to enhance the effectiveness of the network.

Sites Recommended for Relocation:

- Relocate the Spanish Fork (SF) station to a nearby site due to planned construction work at its current location. The SF site, which is located at the Spanish Fork Airport in Utah County, should be moved in the near future due to airport construction. An alternative location within the Spanish Fork airport will be used. The UDAQ, however, will evaluate other sites in the area before proceeding with any changes.
- Relocate the Rose Park (RP) station to the Air Monitoring Center (AMC) once the comparability assessment criteria are attained.

Recommended New Sites/Monitors:

- Two monitors, located at Monticello Academy (2782 S Corporate Park Drive, West Valley City, UT, 84120) and at the new State Prison (located north of I-80 on the southern border of the Great Salt Lake in Salt Lake County) are in the process of being set up. The main purpose of these two sites is to measure the impact of the Inland Port and its effect on population exposure. Desired variables to be monitored at these sites include PM_{2.5}, O₃, nitrogen oxides (NO_x), black carbon (BC) and meteorological parameters.
- The UDAQ will start updating the technology used to measure the meteorological variables. Presently, the system used to measure the wind direction and speed consist of cup anemometers and vane systems (in all the stations but Roosevelt), but, it will be replaced by sonic anemometer systems (2D sonic wind sensors). Temperature and relative humidity probes and pyranometers to measure incoming solar radiation will also updated or included in all the stations.
- Establish a site in Box Elder County to replace the previous Brigham City station. The site will help assess population exposure in this area and will help the forecasters with the PM_{2.5} predictions.
- The UDAQ is fulfilling the number of monitors necessary for each criteria pollutant requirements, however, due to unexpected situations that forced the UDAQ to shut down the existing sites at Ogden-Clearfield CBSA. The UDAQ will find suitable sites to establish a third monitoring site (at the other side of Provo Lake) in Provo-Orem CBSA to have a backup station in this CBSA and to support modeling and a second monitoring site at Cache Valley.
- Establish a second near-road NO₂ monitoring site in Salt Lake CBSA. Other monitoring objectives currently have a higher priority due to the lack of resources.

Monitors' Addition:

• Incorporate continuous PM₁₀ monitoring samplers to operate in co-location with FRM filterbased measurements for comparability assessment. Once the comparability assessment criteria are met, the FEM continuous monitors will replace existing FRM monitors in the network, which will reduce the resources and labor required to maintain the FRM samplers and handle the filter samples.

Lastly, the UDAQ will continue reviewing all stations to ensure that they constantly meet acceptance criteria and monitoring objectives. Any sites that do not meet the requirements will be evaluated for future action.

Appendix A- Site Information

Site:	Air Monitoring Center (AMC)	Longitude:	-111.9461	Station Type:	SLAMS
AQS#:	49-035-3015	Latitude:	40.7769	MSA:	Salt Lake City
Address:	240 North 1950 West	Elevation (m):	1296		
City:	Salt Lake City				
County:	Salt Lake				

Site Objective:

The Air Monitoring Center site is established to replace the Rose Park station as an area of further investigation of PM_{2.5} in Salt Lake County. **Does the site meet the objective:**

Yes, all objectives are met.

Site Description:

The site is located near to the Multi- Agency State Office Building (MASOB) at the North West of Salt Lake City, Salt Lake County. Can data from this site be used to evaluate NAAQS?: Yes

Gaseous/Particulate Parameters						
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective	Scale		
Ammonia	Manual NADP AMoN	Integrated 14 days	Population Exposure	SPM-Transport Regional		
Trace Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- High Neighborhood		
Ozone	Instrumental Ultraviolet	Continuous	Population Exposure	SLAMS- High Neighborhood		
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- High Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood		
PM ₁₀	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood		
Carbon Monoxide	Instrumental Gas Phase Correlation	Continuous	Population Exposure	SLAMS- High Neighborhood		
Sulfur Dioxide, Trace	Pulsed Fluorescence	Continuous	Population Exposure	SLAMS- High Neighborhood		
Meteorological Parameters:						
Parameter	Sampling &	Operating	Tower	Spatial		
	Analysis Method	Schedule	Height	Scale		

Relative Humidity	Air Temperature and Relative Humidity Sensor- Electronic Thin Film	Continuous	10 meters	Urban
Ambient Temperature	Air Temperature and Relative Humidity Sensor- Electronic Resistance	Continuous	10 meters	Urban
Wind Direction	2D-ultrasonic anemometer transducers	Continuous	10 meters	Urban
Wind Speed	2D-ultrasonic anemometer transducers	Continuous	10 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	10 meters	Urban
WD Sigma	Electronic EPA Method	Continuous	10 meters	Urban

Site:	Antelope Island (AI)	Longitude:	-112.2313	Station Type:	SPM
AQS#:	49-011-6001	Latitude:	41.0393	MSA:	Ogden-Clearfield
Address:	Antelope Island	Elevation (m):	1359		
City:	N/A				
County:	Davis				
Site Objective:					
This site is established to	collect meteorological information for	air quality modeling inp	uts.		
Does the site meet the o	bjective: Yes, all objectives are met.				
Site Description:					
The site is on Antelope Is	land State Park, near the ranger reside	nces, in Davis County.			
Can data from this site b	e used to evaluate NAAQS?: No				
	Me	teorological Parameter	S		
Parameter	Sampling &	Operating	Tower	S	patial
	Analysis Method	Schedule	Height		Scale
Relative Humidity	Elec. Thin Film	Continuous	6 meters	l	Jrban
Ambient Temperature	Elec. Resistance	Continuous	6 meters	l	Jrban
Wind Direction	Elec. Resistance Level 1	Continuous	6 meters	l	Jrban
WD Sigma	Elec. EPA Method	Continuous	6 meters	ι	Jrban
Wind Speed	Elec. Chopped Signal Level 1	Continuous	6 meters	l	Jrban

Site:	Bountiful Viewmont (BV)	Longitude:	-111.8845	Station Type:	SLAMS
AQS#:	49-011-0004	Latitude:	40.903	MSA:	Ogden-Clearfield
Address:	1370 North 171 West	Elevation (m):	1309		
City:	Bountiful				
County:	Davis				

Site Objective:

The Bountiful Viewmont site is established to determine public exposure to air pollution. The site also monitors emissions from nearby oil refineries and local sand and gravel operations. Previous monitoring and saturation studies have recorded high O_3 concentrations. This site is chosen for intensive speciation of PM_{2.5} under the EPA Chemical Speciation Network (CSN) and gaseous Volatile Organic Compounds under the EPA National Air Toxics Trends Network (NTTN) including hexavalent chromium and carbonyl compounds. Nitrogen dioxide is monitored in support of the O_3 monitoring.

Does the site meet the objective: Yes, all objectives are met.

Site Description:

The site is located near Viewmont High School at the north end of the city of Bountiful, Davis County.

Can data from this site be used to evaluate NAAQS?: Yes

Gaseous/Particulate Parameters						
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective	Scale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neighborhood		
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real	Continuous	Air Quality Index	SLAMS- Population Neighborhood		
	Time Particulate Monitor					
PM ₁₀ Metals	Manual Gravimetric	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
PM ₁₀ Metals Co-located	Manual Gravimetric	6 samples/year	Population Exposure	SLAMS- Population Neighborhood		
PM _{2.5} Speciation	Manual EPA CSN	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
VOC	Manual EPA NTTN	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
Semi-volatile	Manual EPA NTTN	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
Carbonyl compounds	Manual EPA NTTN	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
Black Carbon	Aethalometer	Continuous	Population Exposure	SLAMS- Population Neighborhood		

Meteorological Parameters						
Parameter	Sampling &	Operating	Tower	Spatial		
	Analysis Method	Schedule	Height	Scale		
Ambient Pressure	Barometric Pressure Transducer	Continuous	1 meter	Urban		
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Urban		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban		
WD Sigma	Elec. EPA Method	Continuous	10 meters	Urban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban		

Site	e: Copperview (CV)	Longitude:	-111.894127	Station Type:	SLAMS		
AQS	#: 49-011-0004	Latitude:	40.597938	MSA:	Salt Lake City		
Addres	s: 1380 North 200 West	Elevation (m):	1309				
City	/: Midvale						
County	/: Salt Lake						
Site Objective:							
Site established to assess	population exposure in southeast Salt Lake	e County					
Does the site meet the objective: Yes, all objectives are met.							
Site Description: The site is located in a neighborhood area of Midvale in Salt Lake County. Can data from this site be used to evaluate NAAQS?: Yes							
	Gaseous/	Particulate Parame	ters				
Parameter	Sampling &	Operating	Monitoring	Spa	atial		
	Analysis Method	Schedule	Objective	Sc	ale		
Carbon Monoxide, Trace	Instrumental Gas Phase	Continuous P	opulation Exposure	SLAMS- Populati	on Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous P	opulation Exposure	SLAMS-High Neig	shborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Populati	on Neighborhood		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous P	opulation Exposure	SLAMS- Populati	on Neighborhood		
Sulfur Dioxide, Trace	Pulsed Fluorescence	Continuous P	opulation Exposure	SLAMS- Populati	on Neighborhood		
	Meteo	rological Parameter	s				
Parameter	Sampling &	Operating	Tower	S	patial		
	Analysis Method	Schedule	Height	9	Scale		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	ι	Jrban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	ι	Jrban		
WD Sigma	Elec. EPA Method	Continuous	10 meters	ι	Jrban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	ι	Jrban		

Site:	Enoch (EN)	Longitude	: -113.055525	Station Type:	SLAMS		
AQS#:	490210005	Latitude	: 37.74743	MSA:	Not in MSA		
Address:	325 East N. Minersville	Elevation (m)	: 1692				
City:	Enoch						
County:	Iron						
County: Iron Iron							
	Gaseous/	Particulate Param	eters				
Parameter	Sampling &	Operating	Monitoring	Sp	atial		
	Analysis Method	Schedule	Objective	Sc	ale		
Carbon Monoxide, Trace	Instrumental Gas Phase	Continuous	Population Exposure	SLAMS- Populat	on Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neig	hborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Populat	on Neighborhood		

PM _{2.5} Real Time	Synchronized Hybrid Ambient Real	Continuous	Air Quality Index	SLAMS- Population Neighborhood		
	Time Particulate Monitor					
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood		
Sulfur Dioxide, Trace	Pulsed Fluorescence	Continuous	Population Exposure	SLAMS- Population Neighborhood		
Meteorological Parameters						
Parameter	Sampling &	Operating	Tower	Spatial		
	Analysis Method	Schedule	Height	Scale		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban		
WD Sigma	Elec. EPA Method	Continuous	10 meters	Urban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban		

Cit							
Sit	e: Erda (ED)	Longitude	-112.3550	Station Type:	SLAMS		
AQS	#: 49-045-0004	Latitude	40.6005	MSA:	Salt Lake City		
Addres	s: 2163 West Erda Way	Elevation (m)	1320				
Ci	t y Erda						
Count	y: Tooele						
Site Objective: This site is established to determine population exposure to air pollutants. Does the site meet the objective: Yes, all objectives are met. Site Description: The site is located in the city of Erda, Tooele County. It is the main monitor for the Tooele county.							
Can data from this site b	Can data from this site be used to evaluate NAAQS?: Yes						
Gaseous/Particulate Parameters							
	Gaseous	Particulate Parame	ters				
Parameter	Gaseous, Sampling &	Particulate Parame	ters Monitoring	Spa	atial		
Parameter	Gaseous, Sampling & Analysis Method	Particulate Parame Operating Schedule	ters Monitoring Objective	Spa Sc	atial ale		
Parameter Ozone	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet	Particulate Parame Operating Schedule Continuous	ters Monitoring Objective Population Exposure	Spa Sc SLAMS-High Neig	atial ale hborhood		
Parameter Ozone PM _{2.5} Real Time	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real	Particulate ParameOperatingScheduleContinuousFormation of the continuous	MonitoringMonitoringObjectiveOpulation ExposureAir Quality Index	Spa Sc SLAMS-High Neig SLAMS- Populati	atial ale hborhood on Neighborhood		
Parameter Ozone PM _{2.5} Real Time	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor	Particulate Parame Operating Schedule Continuous Continuous	Air Quality Index	Spa Sc SLAMS-High Neig SLAMS- Populati	atial ale hborhood on Neighborhood		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence	Particulate Parame Operating Schedule Continuous Continuous Continuous	Air Quality Index	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Meteo	Particulate Parame Operating Schedule Continuous Continuous Continuous Continuous Frological Parameter	Air Quality Index	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Meteo Sampling &	Particulate Parame Operating Schedule Continuous Continuous Continuous Continuous Frological Parameter Operating	Air Quality Index	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood patial		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Meteo Sampling & Analysis Method	Particulate Parame Operating Schedule Continuous Schedule	Monitoring Objective Population Exposure Air Quality Index Population Exposure s: Tower Height	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial cale hborhood on Neighborhood on Neighborhood patial Scale		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter Relative Humidity	Gaseous, Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Meteo Sampling & Analysis Method Elec. Thin Film	Particulate Parame Operating Schedule Continuous Continuous Continuous Continuous Frological Parameter Operating Schedule Continuous	Air Quality Index Copulation Exposure Air Quality Index Copulation Exposure Air Quality Index Copulation Exposure Copulation Expo	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood patial Scale		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter Relative Humidity Ambient Temperature	Gaseous, Sampling & Gaseous, Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Meteo Sampling & Chalysis Method Elec. Thin Film Elec. Resistance	Particulate Parame Operating Schedule Continuous Continuous Continuous Continuous Continuous Coperating Schedule Continuous	Air Quality Index Sopulation Exposure Air Quality Index Sopulation Exposure Air Quality Index Sopulation Exposure Sopulation Expo	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood on Neighborhood patial Scale Jrban		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter Relative Humidity Ambient Temperature Wind Direction	Gaseous, Sampling & Gaseous, Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Keteo Sampling & Lec. Thin Film Elec. Resistance Elec. Resistance Level 1	Particulate Parame Operating Schedule Continuous	Monitoring Objective Population Exposure Air Quality Index Population Exposure opulation Exposure Sopulation	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati SLAMS- Populati	atial cale hborhood on Neighborhood on Neighborhood on Neighborhood patial Scale Jrban Jrban		
Parameter Ozone PM _{2.5} Real Time Nitrogen Dioxide Parameter Relative Humidity Ambient Temperature Wind Direction WD Sigma	Gaseous, Sampling & Sampling & Analysis Method Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor Instrumental Chemiluminescence Instrumental Chemiluminescence Keteo Elec. Thin Film Elec. Resistance Elec. Resistance Level 1 Elec. EPA Method	Particulate Parame Operating Schedule Continuous Continuous	Air Quality Index Copulation Exposure Air Quality Index Copulation Exposure Air Quality Index Copulation Exposure Copulation Expo	Spa Sc SLAMS-High Neig SLAMS- Populati SLAMS- Populati SLAMS- Populati	atial ale hborhood on Neighborhood on Neighborhood on Neighborhood on Neighborhood patial Scale Jrban Jrban Jrban		

Site:	Escalante (ES)	Longitude:	-111.614722	Station Type:	SPM
AQS#:	49-017-0004	Latitude:	37.775556	MSA:	NA
Address:	755 West Main	Elevation (m):	1789		
City	Escalante				
County:	Garfield				
Site Objective:					
This site is established to me	easure O₃ near Escalante National Monu	ment			
Does the site meet the objective:					
Yes, all objectives are met.					

Site Description:

The site is located at the Escalante National Monument visitor's center in Escalante, Garfield County. This site is funded by the Bureau of Land Management

Can data from this site be used to evaluate NAAQS?: No

Gaseous/Particulate Parameters:					
Parameter	Sampling &	Operating	Monitoring	Spatial	
	Analysis Method	Schedule	Objective	Scale	
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	Regional	

Site:	Harrisville (HV)	Longitude:	-111.9865	Station Type:	SLAMS
AQS#:	49-057-1003	Latitude:	41.3028	MSA:	Ogden-Clearfield
Address:	425 West 2550 North	Elevation (m):	1331		
City:	Harrisville				
County:	Weber				

Site Objective:

This site is established in response to an O₃ saturation study indicating this as a potentially high O₃ concentration area. It is monitoring Particulate matter

Does the site meet the objective: Yes, all objectives are met.

Site Description:

The site is located on the grounds of Majestic Elementary School in the city of Harrisville, Weber County. **Can data from this site be used to evaluate NAAQS?:** Yes

Gaseous/Particulate Parameters							
Parameter	Sampling &	Operating	Monitoring	Spatial			
	Analysis Method	Schedule	Objective	Scale			
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood			
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neighborhood			
Carbon Monoxide Trace	Instrumental Gas Phase	Continuous	Population Exposure	sure SLAMS-High Neighborhood			
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood			
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood			
PM ₁₀	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood			
Meteorological Parameters							
Parameter	Sampling &	Operating	Tower	Spatial			
	Analysis Method	Schedule	Height	Scale			
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban			
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban			
WD Sigma	Elec. EPA Method	Continuous	10 meters	Urban			
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban			
Site:	Hawthorne (HW)	Longitude:	-111.8721	Station Type:	SLAMS		
----------	---------------------	----------------	-----------	---------------	----------------		
AQS#:	49-035-3006	Latitude:	40.7343	MSA:	Salt Lake City		
Address:	1675 South 600 East	Elevation (m):	1306				
City:	Salt Lake City						
County:	Salt Lake						

Site Objective:

This site is established to represent population exposure in the Salt Lake City area. This site is also designated as the EPA NCORE site for Utah. **Does the site meet the objective:** Yes, all objectives are met.

Site Description:

The site is located at Hawthorne Elementary School in the southeast section of Salt Lake City, Salt Lake County.

Can data from this site be used to evaluate NAAQS?: Yes

Gaseous/Particulate Parameters							
Parameter	Sampling &	Operating	Monitoring	Spatial			
	Analysis Method	Schedule	Objective	Scale			
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood			
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neighborhood			
Carbon Monoxide Trace	Instrumental Gas Phase	Continuous	Population Exposure	SLAMS-High Neighborhood			
NOy Trace Level	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood			
SO2 Trace Level	Pulsed Fluorescence	Continuous	Population Exposure	SLAMS- Population Neighborhood			
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood			
PM _{2.5} Speciation	Manual EPA CSN	1 in 3 days	Population Exposure	SLAMS- Population Neighborhood			
PM _{2.5} Real Time NCore	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood			
PM ₁₀	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood			
PM _{coarse}	Manual Gravimetric Subtraction	Daily	Population Exposure	SLAMS- Population Neighborhood			

Organic & Elemental	NIDR	Daily	Population Exposure	SLAMS- Population Neighborhood
PAMS C2 to C12	Instrumental Gas Chromatography	Continuous	O ₃ modeling input	Population Neighborhood
Visibility	Instrumented	Continuous	Public Information	Population Neighborhood
	Me	teorological Paramet	ers	
Parameter	Sampling &	Operating	Tower	Spatial
	Analysis Method	Schedule	Height	Scale
Ambient Pressure	Barometric Pressure Transducer	Continuous	3 meters	Urban
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Urban
Solar Radiation	Elec. EPPLY	Continuous	4 meters	Urban
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban
WD Sigma	Elec. EPA Method	Continuous	10 meters	Urban
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban

Site:	Herriman #3 (H3)	Longitude:	-112.036305	Station Type:	SLAMS
AQS#:	49-035-3012	Latitude:	40.496408	MSA:	Salt Lake City
Address:	14058 Mirabella Drive	Elevation (m):	1534		
City:	Herriman				
County:	Salt Lake				

Site Objective:

This site is established to represent population exposure in southwest the Salt Lake City area. **Does the site meet the objective:** Yes, all objectives are met.

Site Description:

The site is located at Fort Herriman Middle School in southwest Salt Lake County Can data from this site be used to evaluate NAAQS?: Yes

Gaseous/Particulate Parameters						
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective	Scale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood		
PM ₁₀	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood		
	Me	teorological Parame	ters			
Parameter	Sampling &	Operating	Tower	Spatial		
	Analysis Method	Schedule	Height	Scale		
Ambient Pressure	Barometric Pressure Transducer	Continuous	10 meters	Urban		
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Urban		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban		

Site:	Hurricane (HC)	Longitude	-113.3051	Station Type:	SLAMS	
AQS#:	49-053-0007	Latitude	: 37.1791	MSA:	St George	
Address:	147 North 870 West	Elevation (m)	: 992			
City:	Hurricane					
County:	Washington					
Site Objective: This site is established to determine population exposure to O ₃ in Washington County						
Does the site meet the o	bjective: Yes, all objectives are met.					
Site Description: This site Can data from this site b	e is located behind the Hurricane City of e used to evaluate NAAQS?: Yes	ffices				
	Gased	ous/Particulate Parame	eters			
Parameter	Sampling &	Operating	Monitoring	Spa	atial	
	Analysis Method	Schedule	Objective	Sc	ale	
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Populatior	n Neighborhood	
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neigh	borhood	
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Populatior	n Neighborhood	
	Me	teorological Paramete	rs			
Parameter	Sampling &	Operating	Tower	S	patial	
	Analysis Method	Schedule	Height		Scale	
Barometric Pressure	Barometric Pressure Transducer	Continuous	2 meters	Re	egional	
WD Sigma	Elec. EPA Method	Continuous	10 meters	Re	egional	
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Re	egional	
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Re	egional	
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Re	egional	

Site:	Lindon (LN)	Longitude:	-111.7133	Station Type:	SLAMS
AQS#:	49-049-4001	Latitude:	40.3396	MSA:	Provo - Orem
Address:	50 North Main	Elevation (m):	1442		
City:	Lindon				
County:	Utah				

Site Objective: This site is established to determine PM emissions from commercial and industrial sources. Historically, this site has reported the highest PM values in Utah County

Does the site meet the objective: Yes, all objectives are met.

Site Description: The site is located at the Lindon Elementary School in the City of Lindon, Utah County **Can data from this site be used to evaluate NAAQS?:** Yes

Gaseous/Particulate Parameters					
Parameter	Sampling &	Operating	Monitoring	Spatial	
	Analysis Method	Schedule	Objective	Scale	
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood	
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS-High Neighborhood	
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood	
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population	
PM _{2.5}	Manual Gravimetric Co-located	1 in 6 days	Precision and Accuracy	SLAMS- Population	
PM _{2.5}	Manual EPA CSN	1 in 6 days	Population Exposure	SLAMS- Population	
PM10	Manual Gravimetric	Daily	Population Exposure	SLAMS-Impact Neighborhood	
Carbon Monoxide	Instrumental Gas Phase	Continuous	Population Exposure	SLAMS-High Neighborhood	
	Me	teorological Param	eters		
Parameter	Sampling &	Operating	Tower	Spatial	
	Analysis Method	Schedule	Height	Scale	
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Regional	
WD Sigma	Elec. EPA Method	Continuous	10 meters	Regional	
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Regional	

Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Regional
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Regional

Site:	Near Road (NR)	Longitude:	-111.9012	Station Type:	SPM		
AQS#:	49-035-4002	Latitude:	40.6629	MSA:	Salt Lake City		
Address:	5001 Galleria Dr.	Elevation (m)	1295				
City:	Murray						
County:							
Site Objective: This site re	cently established to assess populatio	n exposure to and to m	onitor vehicular contrib	ution to air pollutio	n as part of the		
EPA NO ₂ monitoring							
Does the site meet the ob	jective: Yes, all objectives are met.						
Site Description: A site was found for the Near Read monitor on L1E at the address E001 Calleria Dr. Murray							
Site Description: A site wa	as found for the Near Road monitor on	I-15 at the address 500	1 Galleria Dr. Murrav				
Site Description: A site wa	e found for the Near Road monitor on used to evaluate NAAOS?: No	I-15 at the address 500	1 Galleria Dr, Murray				
Site Description: A site wa Can data from this site be	as found for the Near Road monitor on a used to evaluate NAAQS?: No	I-15 at the address 500	1 Galleria Dr, Murray				
Site Description: A site wa Can data from this site be	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gased	I-15 at the address 500	1 Galleria Dr, Murray				
Site Description: A site wa Can data from this site be Parameter	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gasec Sampling &	I-15 at the address 500	1 Galleria Dr, Murray ters Monitoring	Sn	atial		
Site Description: A site wa Can data from this site be Parameter	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gasec Sampling & Analysis Mathod	I-15 at the address 500 bus/Particulate Parame Operating	1 Galleria Dr, Murray ters Monitoring	Spa	atial		
Site Description: A site wa Can data from this site be Parameter	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gasec Sampling & Analysis Method	I-15 at the address 500 pus/Particulate Parame Operating Schedule	1 Galleria Dr, Murray ters Monitoring Objective	Spa Sc	atial ale		
Site Description: A site wa Can data from this site be Parameter Nitrogen Dioxide	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gasec Sampling & Analysis Method Instrumental Chemiluminescence	I-15 at the address 500 ous/Particulate Parame Operating Schedule Continuous	1 Galleria Dr, Murray ters Monitoring Objective Population Exposure	Spa Sc SLAMS- Population	atial ale Neighborhood		
Site Description: A site wa Can data from this site be Parameter Nitrogen Dioxide Ozone	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gased Sampling & Analysis Method Instrumental Chemiluminescence Instrumental Ultra Violet	I-15 at the address 500 Dus/Particulate Parame Operating Schedule Continuous F Continuous	ters Monitoring Objective Population Exposure Population Exposure	Spa Sc SLAMS- Population SLAMS- Population	atial ale Neighborhood Neighborhood		
Site Description: A site wa Can data from this site be Parameter Nitrogen Dioxide Ozone PM _{2.5} Real Time	as found for the Near Road monitor on e used to evaluate NAAQS?: No Gased Sampling & Analysis Method Instrumental Chemiluminescence Instrumental Ultra Violet Synchronized Hybrid Ambient Real	I-15 at the address 500 ous/Particulate Parame Operating Schedule Continuous F Continuous Continuous	ters Monitoring Objective Opulation Exposure Air Quality Index	Spa Sc SLAMS- Population SLAMS- Population SLAMS- Population	atial ale Neighborhood Neighborhood Neighborhood		
Site Description: A site wa Can data from this site be Parameter Nitrogen Dioxide Ozone PM _{2.5} Real Time	as found for the Near Road monitor on used to evaluate NAAQS?: No Gased Sampling & Analysis Method Instrumental Chemiluminescence Instrumental Ultra Violet Synchronized Hybrid Ambient Real Time Particulate Monitor	I-15 at the address 500 Dus/Particulate Parame Operating Schedule Continuous F Continuous Continuous	ters Monitoring Objective Population Exposure Air Quality Index	Spa Sc SLAMS- Population SLAMS- Population SLAMS- Population	atial ale Neighborhood Neighborhood Neighborhood		

Site:	Price #2 (P2)	Longitude	-110.77	Station Type:	SPM		
AQS#:	49-007-1003	Latitude	39.5958	MSA:	Price		
Address:	351 South Weasel Run Road	Elevation (m)	: 1740				
City:	Price						
County:	Carbon						
Site Objective: This site is established in response to a three state O ₃ study. It is funded by the Bureau of Land Management							
Does the site meet the objective: Yes, all objectives are met.							
Site Description: This site	is located in a farm field 3.6 Km east o	f Price					
Can data from this site b	e used to evaluate NAAQS?: Yes						
	Gased	ous/Particulate Parame	eters				
Parameter	Sampling &	Operating	Monitoring	Spa	atial		
	Analysis Method	Schedule	Objective	Sc	ale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous F	Population Exposure	SLAMS- Populatior	n Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous F	Population Exposure	SLAMS-High Neigh	borhood		
	Me	teorological Paramete	rs				
Parameter	Sampling &	Operating	Tower	S	patial		
	Analysis Method	Schedule	Height	9	Scale		
WD Sigma	Elec. EPA Method	Continuous	10 meters	Re	egional		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Re	egional		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Re	gional		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Re	gional		

Site:	Roosevelt (RS)	Longitude	: -110.009	Station Type:	SPM		
AQS#:	49-013-0002	Latitude	: 40.2941	MSA:	NA		
Address:	290 South 1000 West	Elevation (m)	: 1588				
City:	Roosevelt						
County:	Duchesne						
Site Objective: This site is established to determine maximum O ₃ and PM _{2.5} concentrations in Duchesne County							
Does the site meet the objective: Yes, all objectives are met.							
Site Description: The site	is located in the city park North West s	section of Roosevelt.					
Can data from this site b	e used to evaluate NAAQS?: Yes						
		us/Particulato Param	ators				
Darameter	Sampling &	Onerating	Monitoring	Sn	atial		
raiametei		Schodulo	Objective	Sh.			
Nitrogon Diovido		Continuous	Jigh Q. Winter Study	State			
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous		Reg	IUIIAI		
Ozone	Instrumental Ultra Violet	Continuous H	High O₃ Winter Study	Reg	ional		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	Reg	ional		
	Me	teorological Paramete	rs				
Parameter	Sampling &	Operating	Tower	S	patial		
	Analysis Method	Schedule	Height		Scale		
Relative Humidity	Elec. Thin Film	Continuous	10 meters	L	Jrban		
WD Sigma	Elec. EPA Method	Continuous	10 meters	L	Jrban		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	L	Jrban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	L	Jrban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	L	Jrban		
Ambient Temperature	Elec. Resistance	Continuous	2 meters	L	Jrban		
Temperature	Math Channel	Continuous	2 meters	L	Jrban		

Site:	Rose Park (RP)	Longitud	e: -111.9309	Station Type:	SLAMS		
AQS#:	49-035-3010	Latitud	e: 40.7955	MSA:	Salt Lake City		
Address:	1354 West Goodwin Avenue	Elevation (m	i): 1295				
City:	Salt Lake City						
County:	Salt Lake						
Site Objective: This site is established to better represent PM2.5 exposure in this area of Salt Lake City Does the site meet the objective: Yes, all objectives are met.							
Site Description: The site is located in the community of Rose Park at the north end of Salt Lake City, Salt Lake County Can data from this site be used to evaluate NAAQS?: Yes							
	Gased	ous/Particulate Paran	neters				
Parameter	Sampling &	Operating	Monitoring	Spa	atial		
	Analysis Method	Schedule	Objective	Sc	Scale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood			
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS- Population	SLAMS- Population Neighborhood		
Carbon Monoxide	Instrumental Gas Phase	Continuous	Population Exposure	SLAMS- Population	SLAMS- Population Neighborhood		
Sulfur Dioxide	Pulsed Fluorescence	Continuous	Population Exposure	SLAMS- Population	Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood			
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population	I		
PM _{2.5}	Manual Gravimetric Co-located	Daily	Precision and Accuracy	SLAMS- Population	1		
Meteorological Parameters							
Parameter	Sampling &	Operating	Tower	S	patial		
	Analysis Method	Schedule	Height		Scale		
WD Sigma	Elec. EPA Method	Continuous	10 meters	ιι	Jrban		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	L	Jrban		
Wind Direction	Elec. Resistance Level 1	Continuous 10 meters		ιι	Jrban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	L	Jrban		

Site:	Saltair (SA)	Longitude:	-112.0497	Station Type:	SPM		
AQS#:	49-035-3005	Latitude:	40.8061	MSA:	Salt Lake City		
Address:	6640 West 1680 North	Elevation (m):	1282				
City:	Salt Lake City						
County:	Salt Lake						
Site Objective: This site is	established to collect meteorologi	cal information for air quali	ty models				
Does the site meet the of	jective: Yes, all objectives are met	•					
Site Description: The site	Site Description: The site is located west of the Salt Lake Airport in Salt Lake County.						
Can data from this site be	e used to evaluate NAAQS?: No						
Meteorological Parameters							
Parameter Sampling & Operating Tower Spatial					patial		
	Analysis Method	Schedule	Height		Scale		
Relative Humidity	Elec. Thin Film	Continuous	10 meters	l	Jrban		
Ambient Temperature	Elec. Resistance	Continuous	10 meters	l	Jrban		
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	l	Jrban		
WD Sigma	Elec. EPA Method	Continuous	10 meters	L	Jrban		
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	l	Jrban		
Solar Radiation	Elec. LiCor	Continuous	2 meters	l	Jrban		

Site:	Smithfield (SM)	Longitude:	-111.851944	Station Type:	SLAMS
AQS#:	49-005-0007	Latitude:	41.842778	MSA:	Logan
Address:	675 West 220 North	Elevation (m):	1377		
City:	Smithfield				
County:	Cache				

Site Objective: Site established to replace Logan site and determine general population exposure. **Does the site meet the objective:** Yes, all objectives are met.

Site Description: This site is located at Birch Creek Elementary School in Cache County. It is approximately 7 miles north of Logan **Can data from this site be used to evaluate NAAQS?:** Yes

Gaseous/Particulate Parameters						
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective	Scale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	SLAMS- Population Neighborhood		
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	SLAMS- Population Neighborhood		
PM ₁₀	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood		
PM ₁₀	Manual Gravimetric Co-located	1 in 6 days	Precision and Accuracy	SLAMS- Population Neighborhood		
PM _{2.5} Speciation	Manual EPA CSN	1 in 6 days	Population Exposure	SLAMS- Population Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor Co-located	Continuous	Precision and Accuracy	SLAMS- Population Neighborhood		
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real Time Particulate Monitor	Continuous	Air Quality Index	SLAMS- Population Neighborhood		
PM _{2.5}	Manual Gravimetric	Daily	Population Exposure	SLAMS- Population Neighborhood		
PM _{2.5}	Manual Gravimetric Co-located	Daily	Precision and Accuracy	SLAMS- Population Neighborhood		
Meteorological Parameters						
Parameter	Sampling &	Operating Tower		Spatial		
	Analysis Method	Schedule Height		Scale		

WD Sigma	Elec. EPA Method	Continuous	10 meters	Urban
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Urban
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Urban
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Urban
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Urban
Solar Radiation	Elec. EPPLY	Continuous	10 meters	Urban

Site:	Spanish Fork (SF)	Longitude:	-111.6603	Station Type:	SLAMS	
AQS#:	49-049-5010	Latitude:	40.1364	MSA:	Provo - Orem	
Address:	312 West 2050 North	Elevation (m):	1380			
City:	Spanish Fork					
County:	Utah					
Site Objective: This site	is established to determine the boundar	y of the high O₃ and PM	2.5 concentrations in Ut	ah County.		
Does the site meet the	objective: Yes, all objectives are met.					
Site Description: The sit	e is located at the Spanish Fork airport in	the city of Spanish Forl	(Litah County			
Can data from this site	be used to evaluate NAAOS?: Yes	rene ency of Spanish For	, otan county.			
	Gased	ous/Particulate Paramet	ers			
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective Scale		ale	
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous P	opulation Exposure	Ilation Exposure SLAMS- Population Neighborhoo		
Ozone	Instrumental Ultra Violet	Continuous Po	Population Exposure SLAMS- Population Neighborh		Neighborhood	
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real	Continuous	ontinuous Air Quality Index		SLAMS- Population Neighborhood	
	Time Particulate Monitor				-	
PM _{2.5}	Manual Gravimetric	Daily Po	Population Exposure SLAMS- Population Neighborhoo		Neighborhood	
Meteorological Parameters						
Parameter	Sampling &	Operating	Tower	S	patial	
	Analysis Method	Schedule Height		9	Scale	
WD Sigma	Elec. EPA Method	Continuous	10 meters	L	Jrban	
Ambient Temperature	Elec. Resistance	Continuous 10 meters		L	Jrban	
Wind Direction	Elec. Resistance Level 1	Continuous 10 meters		L	Jrban	

Continuous

10 meters

Urban

Wind Speed

Elec. Chopped Signal Level 1

Site	Vernal (V4)	Longitude	· _109 560733	Station Type:	SLAMS	
AOS#:	49-047-1003	Latitude	· 40 464971	MSA:	ΝΔ	
Address:	628 North 1700 West	Elevation (m)	: 1667			
City:	Vernal					
County:	Uintah					
Site Objective: This site	e is established was set up in response to	an O₃ study.				
Does the site meet the	objective: Yes, all objectives are met.	·				
Site Description: The si	te is located at the northwest of the city	of Vernal.				
Can data from this site	be used to evaluate NAAQS?: Yes					
Gaseous/Particulate Parameters						
Parameter	Sampling &	Operating	Monitoring	Spatial		
	Analysis Method	Schedule	Objective	Scale		
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	Regional		
Ozone	Instrumental Ultra Violet	Continuous	Population Exposure	Reg	ional	
PM _{2.5} Real Time	Synchronized Hybrid Ambient Real	Continuous	Air Quality Index	SLAMS-F	opulation	
	Time Particulate Monitor					
Meteorological Parameters						
Parameter	Sampling &	Operating	Tower	S	patial	
	Analysis Method	Schedule	Height		Scale	
WD Sigma	Elec. EPA Method	Continuous	10 meters	Re	egional	
Ambient Temperature	Elec. Resistance	Continuous	10 meters	Re	egional	
Wind Direction	Elec. Resistance Level 1	Continuous	10 meters	Re	egional	
Wind Speed	Elec. Chopped Signal Level 1	Continuous	10 meters	Re	egional	
Relative Humidity	Elec. Thin Film	Continuous	10 meters	Re	egional	
Barometric pressure	Pressure Transducer	Continuous	2 meters	Re	egional	